THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY

We describe the operation and performance of the difference imaging pipeline (DiffImg) used to detect transients in deep images from the Dark Energy Survey Supernova program (DES-SN) in its first observing season from 2013 August through 2014 February. DES-SN is a search for transients in which ten 3 deg2 fields are repeatedly observed in the g, r, i, z passbands with a cadence of about 1 week. The observing strategy has been optimized to measure high-quality light curves and redshifts for thousands of Type Ia supernovae (SNe Ia) with the goal of measuring dark energy parameters. The essential DiffImg functions are to align each search image to a deep reference image, do a pixel-by-pixel subtraction, and then examine the subtracted image for significant positive detections of point-source objects. The vast majority of detections are subtraction artifacts, but after selection requirements and image filtering with an automated scanning program, there are ∼130 detections per deg2 per observation in each band, of which only ∼25% are artifacts. Of the ∼7500 transients discovered by DES-SN in its first observing season, each requiring a detection on at least two separate nights, Monte Carlo (MC) simulations predict that 27% are expected to be SNe Ia or core-collapse SNe. Another ∼30% of the transients are artifacts in which a small number of observations satisfy the selection criteria for a single-epoch detection. Spectroscopic analysis shows that most of the remaining transients are AGNs and variable stars. Fake SNe Ia are overlaid onto the images to rigorously evaluate detection efficiencies and to understand the DiffImg performance. The DiffImg efficiency measured with fake SNe agrees well with expectations from a MC simulation that uses analytical calculations of the fluxes and their uncertainties. In our 8 “shallow” fields with single-epoch 50% completeness depth ∼23.5, the SN Ia efficiency falls to 1/2 at redshift z ≈ 0.7; in our 2 “deep” fields with mag-depth ∼24.5, the efficiency falls to 1/2 at z ≈ 1.1. A remaining performance issue is that the measured fluxes have additional scatter (beyond Poisson fluctuations) that increases with the host galaxy surface brightness at the transient location. This bright-galaxy issue has minimal impact on the SNe Ia program, but it may lower the efficiency for finding fainter transients on bright galaxies.

M. Sullivan | C. B. D'Andrea | D. A. Finley | A. Roodman | D. J. James | M. Soares-Santos | A. Papadopoulos | H. T. Diehl | K. Honscheid | W. Wester | D. Brooks | G. Tarle | E. Bertin | R. A. Gruendl | G. M. Bernstein | A. K. Romer | I. Sevilla-Noarbe | R. C. Nichol | A. Carnero Rosell | L. N. da Costa | S. Desai | T. F. Eifler | A. Fausti Neto | J. Frieman | D. Gruen | K. Kuehn | N. Kuropatkin | M. A. G. Maia | J. L. Marshall | P. Martini | R. Ogando | A. A. Plazas | E. Sanchez | F. Sobreira | B. Flaugher | R. Kessler | F. B. Abdalla | F. J. Castander | R. Miquel | J. Marriner | M. Carrasco Kind | R. J. Foley | A. R. Walker | S. Allam | M. Crocce | M. Smith | R. Nichol | D. Gerdes | J. Frieman | F. Castander | F. Abdalla | M. Sullivan | L. Costa | K. Honscheid | M. Maia | R. Ogando | F. Sobreira | G. Bernstein | D. Tucker | R. Gruendl | R. Kessler | M. Sako | S. Allam | H. Diehl | I. Sevilla-Noarbe | E. Bertin | D. Brooks | M. Crocce | C. D'Andrea | S. Desai | T. Eifler | B. Flaugher | D. Gruen | D. James | K. Kuehn | N. Kuropatkin | R. Miquel | A. Plazas | A. Romer | M. Smith | G. Tarlé | R. Thomas | A. Walker | W. Wester | D. Scolnic | R. Foley | Mathew Smith | M. Soares-Santos | E. Sánchez | A. Benoit-Lévy | D. Finley | P. Martini | B. Nord | A. Papadopoulos | J. Thaler | J. Marriner | M. Childress | J. Fischer | F. Yuan | R. Gupta | K. Reil | R. Covarrubias | Ting S. Li | D. Goldstein | T. Abbott | D. Scolnic | A. Benoit-Levy | T. Abbott | C. J. Miller | M. Sako | R. C. Smith | J. Thaler | D. Tucker | R. Covarrubias | R. C. Thomas | R. R. Gupta | T. S. Li | F. Yuan | M. Childress | M. Marchã | D. Goldstein | J. Fischer | M. C. Kind | A. C. Rosell | M. Marcha | A. Roodman | J. Marshall | C. Miller | A. F. Neto | T. Li | R. Smith | T. Li | T. Li | Robert C. Nichol | R. Nichol | R. C. Smith | M. Sullivan

[1]  R. Nichol,et al.  OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results , 2015, 1504.03039.

[2]  M. Sullivan,et al.  DES13S2cmm: the first superluminous supernova from the Dark Energy Survey , 2015, 1501.07232.

[3]  R. Nichol,et al.  Dark Energy Survey Discovery of a Likely Tidal Disruption Event , 2015 .

[4]  Caltech,et al.  Weighing the Giants – II. Improved calibration of photometry from stellar colours and accurate photometric redshifts , 2012, 1208.0602.

[5]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[6]  P. Astier,et al.  Photometry of supernovae in an image series: methods and application to the SuperNova Legacy Survey (SNLS) , 2013, 1306.5153.

[7]  Jennifer Barnes,et al.  EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS , 2013, 1303.5787.

[8]  J. Frieman,et al.  TESTING MODELS OF INTRINSIC BRIGHTNESS VARIATIONS IN TYPE Ia SUPERNOVAE AND THEIR IMPACT ON MEASURING COSMOLOGICAL PARAMETERS , 2012, 1209.2482.

[9]  J. Mohr,et al.  THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE , 2012, 1204.1210.

[10]  M. Sullivan,et al.  SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.

[11]  J. G. Jernigan,et al.  Astronomical Data Analysis Software and Systems XX , 2011 .

[12]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[13]  N. S. Philip,et al.  Results from the Supernova Photometric Classification Challenge , 2010, 1008.1024.

[14]  I. Hook,et al.  REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY , 2010, 1006.2254.

[15]  R. Nichol,et al.  PHOTOMETRIC ESTIMATES OF REDSHIFTS AND DISTANCE MODULI FOR TYPE Ia SUPERNOVAE , 2010, 1001.0738.

[16]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[17]  M. Sullivan,et al.  The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.

[18]  C. Stubbs,et al.  STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS , 2009, 0903.5302.

[19]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[20]  D. M. Bramich,et al.  A new algorithm for difference image analysis , 2008, 0802.1273.

[21]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[22]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[23]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[24]  Edwin A. Valentijn,et al.  The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .

[25]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[26]  S. Bailey,et al.  How to Find More Supernovae with Less Work: Object Classification Techniques for Difference Imaging , 2006, 0705.0493.

[27]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[28]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[29]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[30]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[31]  J. Anthony Tyson,et al.  Survey and Other Telescope Technologies and Discoveries , 2002 .

[32]  I. Hook,et al.  Accepted for publication in The Astrophysical Journal LPNHE 02-02 The distant Type Ia supernova rate , 2002 .

[33]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[34]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[35]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[36]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[37]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[38]  Richard Kessler,et al.  PHOTOMETRIC SN IA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA , 2022 .