Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data

The goal of landscape genetics is to detect and explain landscape effects on genetic diversity and structure. Despite the increasing popularity of landscape genetic approaches, the statistical methods for linking genetic and landscape data remain largely untested. This lack of method evaluation makes it difficult to compare studies utilizing different statistics, and compromises the future development and application of the field. To investigate the suitability and comparability of various statistical approaches used in landscape genetics, we simulated data sets corresponding to five landscape-genetic scenarios. We then analyzed these data with eleven methods, and compared the methods based on their statistical power, type-1 error rates, and their overall ability to lead researchers to accurate conclusions about landscape-genetic relationships. Results suggest that some of the most commonly applied techniques (e.g. Mantel and partial Mantel tests) have high type-1 error rates, and that multivariate, non-linear methods are better suited for landscape genetic data analysis. Furthermore, different methods generally show only moderate levels of agreement. Thus, analyzing a data set with only one method could yield method-dependent results, potentially leading to erroneous conclusions. Based on these findings, we give recommendations for choosing optimal combinations of statistical methods, and identify future research needs for landscape genetic data analyses.

[1]  Bryan F. J. Manly,et al.  Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations , 1986, Researches on Population Ecology.

[2]  D. Lindenmayer,et al.  Landscape modification and habitat fragmentation: a synthesis , 2007 .

[3]  Gernot Segelbacher,et al.  Habitat type does not affect population genetic structure in sympatric great tits ( Parus major ) and blue tits ( P. caeruleus ) , 2007 .

[4]  Timothy H. Keitt,et al.  LANDSCAPE CONNECTIVITY: A GRAPH‐THEORETIC PERSPECTIVE , 2001 .

[5]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[6]  F. Balloux EASYPOP (version 1.7): a computer program for population genetics simulations. , 2001, The Journal of heredity.

[7]  Robert P Freckleton,et al.  Why do we still use stepwise modelling in ecology and behaviour? , 2006, The Journal of animal ecology.

[8]  Felix Gugerli,et al.  Adaptive vs. neutral genetic diversity: implications for landscape genetics , 2006, Landscape Ecology.

[9]  B. Manly Randomization, Bootstrap and Monte Carlo Methods in Biology , 2018 .

[10]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[11]  M. H. Licht,et al.  Multiple regression and correlation. , 1995 .

[12]  R E Michod,et al.  Ecological genetics. , 1981, Science.

[13]  T. Ricketts The Matrix Matters: Effective Isolation in Fragmented Landscapes , 2001, The American Naturalist.

[14]  Lenore Fahrig,et al.  Landscape heterogeneity and metapopulation dynamics , 2007 .

[15]  Pierre Legendre,et al.  DISTANCE‐BASED REDUNDANCY ANALYSIS: TESTING MULTISPECIES RESPONSES IN MULTIFACTORIAL ECOLOGICAL EXPERIMENTS , 1999 .

[16]  S. Matter,et al.  Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration , 2005, Proceedings of the Royal Society B: Biological Sciences.

[17]  Helene H. Wagner,et al.  A brief guide to Landscape Genetics , 2006, Landscape Ecology.

[18]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[19]  Atte Moilanen,et al.  SIMPLE CONNECTIVITY MEASURES IN SPATIAL ECOLOGY , 2002 .

[20]  Rong-Cai Yang,et al.  A LIKELIHOOD‐BASED APPROACH TO ESTIMATING AND TESTING FOR ISOLATION BY DISTANCE , 2004, Evolution; international journal of organic evolution.

[21]  L. Bernatchez,et al.  Canonical correspondence analysis for estimating spatial and environmental effects on microsatellite gene diversity in brook charr (Salvelinus fontinalis) , 1999 .

[22]  T. Simons,et al.  Spatial autocorrelation and autoregressive models in ecology , 2002 .

[23]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[24]  F. Rousset Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. , 1997, Genetics.

[25]  S. Funk,et al.  Ecological factors influence population genetic structure of European grey wolves , 2006, Molecular ecology.

[26]  Pierre Taberlet,et al.  Landscape genetics: combining landscape ecology and population genetics , 2003 .

[27]  Brian H. McArdle,et al.  FITTING MULTIVARIATE MODELS TO COMMUNITY DATA: A COMMENT ON DISTANCE‐BASED REDUNDANCY ANALYSIS , 2001 .

[28]  J. Goudet FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics , 1995 .

[29]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[30]  Rob Roy Ramey,et al.  Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep , 2005 .

[31]  Bryan K. Epperson,et al.  Geographical Genetics (Mpb-38) , 2003 .

[32]  Philip A. Stephens,et al.  Inference in ecology and evolution. , 2007, Trends in ecology & evolution.

[33]  Erik Matthysen,et al.  The application of 'least-cost' modelling as a functional landscape model , 2003 .

[34]  François Rousset,et al.  PARTIAL MANTEL TESTS: REPLY TO CASTELLANO AND BALLETTO , 2002 .

[35]  Jens Dauber,et al.  Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli , 2006, Landscape Ecology.

[36]  Pierre Faubet,et al.  A New Bayesian Method to Identify the Environmental Factors That Influence Recent Migration , 2008, Genetics.

[37]  Yves Van de Peer,et al.  zt: A Sofware Tool for Simple and Partial Mantel Tests , 2002 .

[38]  K. R. Clarke,et al.  A Method Of Linking Multivariate Community Structure To Environmental Variables , 1993 .

[39]  Justin S. Brashares,et al.  Optimizing dispersal and corridor models using landscape genetics , 2007 .

[40]  Nicolas Ray,et al.  pathmatrix: a geographical information system tool to compute effective distances among samples , 2005 .

[41]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[42]  P. Legendre,et al.  MODELING BRAIN EVOLUTION FROM BEHAVIOR: A PERMUTATIONAL REGRESSION APPROACH , 1994, Evolution; international journal of organic evolution.

[43]  Vladimir Makarenkov,et al.  Nonlinear redundancy analysis and canonical correspondence analysis based on polynomial regression , 2002 .

[44]  L. Waits,et al.  Putting the ‘landscape’ in landscape genetics , 2007, Heredity.

[45]  Pierre Legendre,et al.  Comparison of permutation methods for the partial correlation and partial mantel tests , 2000 .

[46]  C. Braak Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis , 1986 .

[47]  Melanie April Murphy New approaches in landscape genetics and niche modeling for understanding limits to anuran distributions , 2008 .

[48]  A. Storfer,et al.  Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum) , 2005, Molecular ecology.

[49]  J. Richard Landis,et al.  Large sample variance of kappa in the case of different sets of raters. , 1979 .

[50]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[51]  Ira H. Bernstein,et al.  Multiple Regression and Correlation—Part 1. Basic Concepts , 1988 .

[52]  Santiago Saura,et al.  A new habitat availability index to integrate connectivity in landscape conservation planning : Comparison with existing indices and application to a case study , 2007 .

[53]  R. Sokal,et al.  Multiple regression and correlation extensions of the mantel test of matrix correspondence , 1986 .

[54]  K. R. Clarke,et al.  Change in marine communities : an approach to statistical analysis and interpretation , 2001 .

[55]  S. Castellano,et al.  IS THE PARTIAL MANTEL TEST INADEQUATE? , 2002, Evolution; international journal of organic evolution.

[56]  H. Ernest,et al.  Population structure of California coyotes corresponds to habitat‐specific breaks and illuminates species history , 2004, Molecular ecology.

[57]  A Coulon,et al.  Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual–based approach , 2004, Molecular ecology.

[58]  Oscar Gaggiotti,et al.  Identifying the Environmental Factors That Determine the Genetic Structure of Populations , 2006, Genetics.

[59]  M. Hare,et al.  Isolation by distance in the eastern oyster, Crassostrea virginica, in Chesapeake Bay. , 2006, The Journal of heredity.

[60]  Helene H. Wagner,et al.  DIRECT MULTI‐SCALE ORDINATION WITH CANONICAL CORRESPONDENCE ANALYSIS , 2004 .

[61]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[62]  H. Hauffe,et al.  Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) in the Italian Alps , 2005, Molecular ecology.

[63]  Michael Greenacre,et al.  Canonical Correspondence Analysis in Social Science Research , 2009 .

[64]  Marc Mingelbier,et al.  The landscape genetics of yellow perch (Perca flavescens) in a large fluvial ecosystem , 2008, Molecular ecology.

[65]  Sergio Castellano,et al.  IS THE PARTIAL MANTEL TEST INADEQUATE? , 2002, Evolution; international journal of organic evolution.

[66]  Samuel A. Cushman,et al.  Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling , 2006, The American Naturalist.

[67]  J. Elith,et al.  Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment , 2007 .

[68]  Helene H. Wagner,et al.  Landscape Genetics , 2008 .

[69]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[70]  B. Mcrae,et al.  ISOLATION BY RESISTANCE , 2006, Evolution; international journal of organic evolution.

[71]  Lonnie W. Aarssen,et al.  Interpreting co-variation in species richness and productivity in terrestrial vegetation: Making sense of causations and correlations at multiple scales , 2004, Folia Geobotanica.

[72]  F. Rousset,et al.  ARE PARTIAL MANTEL TESTS ADEQUATE? , 2001, Evolution; international journal of organic evolution.