GROUND-BASED TRANSIT SPECTROSCOPY OF THE HOT-JUPITER WASP-19b IN THE NEAR-INFRARED

We present ground-based measurements of the transmission and emission spectra of the hot-Jupiter WASP-19b in nine spectroscopic channels from 1.25 to 2.35µm. The measurements are based on the combined analysis of time-series spectroscopy obtained during two complete transits and two complete secondary eclipses of the planet. The observations were performed with the MMIRS instrument on the MagellanII telescope using the technique of multi-object spectroscopy with wide slits. We compare the transmission and emission data to theoretical models to constrain the composition and thermal structure of the planet’s atmosphere. Our measured transmission spectrum exhibits a scatter that corresponds to 1.3 scale heights of the planet’s atmosphere, which is consistent with the size of spectral features predicted by theoretical models for a clear atmosphere. We detected the secondary eclipses of the planet at significances ranging from 2.2 to 14.4�. The secondary eclipse depths, and the significances of the detections increase towards longer wavelengths. Our measured emission spectrum is consistent with a 2250K effectively isothermal 1-D model for the planet’s dayside atmosphere. This model also matches previously published photometric measurements from the Spitzer Space Telescope and ground-based telescopes. These results demonstrate the important role that groundbased observations using multi-object spectroscopy can play in constraining the properties of exoplanet atmospheres, and they also emphasize the need for high-precision measurements based on observations of multiple transits and eclipses. Subject headings: planets and satellites: atmospheres — planets and satellites: individual: WASP-19b — techniques: photometric

[1]  Observatoire de Geneve,et al.  VLT transit and occultation photometry for the bloated planet CoRoT-1b , 2009, 0905.4571.

[2]  Ian S. McLean,et al.  Performance of the HgCdTe detector for MOSFIRE, an imager and multi-object spectrometer for Keck Observatory , 2012, Other Conferences.

[3]  L. Observatory,et al.  GROUND-BASED DETECTIONS OF THERMAL EMISSION FROM CoRoT-1b AND WASP-12b , 2011, 1109.5179.

[4]  T. Barman,et al.  HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b , 2011, 1104.1173.

[5]  D. Ehrenreich,et al.  Transit spectrophotometry of the exoplanet HD 189733b - II. New Spitzer observations at 3.6 μm , 2010, 1008.2481.

[6]  J. Budaj A simple model of the reflection effect for the interacting binaries and extrasolar planets , 2010, 1003.1662.

[7]  S. Albrecht,et al.  Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b , 2008, 0805.0789.

[8]  A. Collier Cameron,et al.  H-band thermal emission from the 19-h period planet WASP-19b , 2010, 1002.1947.

[9]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[10]  Paul Martini,et al.  MMT and Magellan Infrared Spectrograph , 2012 .

[11]  Ichi Tanaka,et al.  RE-EVALUATING WASP-12b: STRONG EMISSION AT 2.315 μm, DEEPER OCCULTATIONS, AND AN ISOTHERMAL ATMOSPHERE , 2012, 1210.4836.

[12]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[13]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[14]  D. Queloz,et al.  ON THE ORBIT OF THE SHORT-PERIOD EXOPLANET WASP-19b , 2011, 1101.3293.

[15]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[16]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[17]  The GROUSE project - II. Detection of the Ks-band secondary eclipse of exoplanet HAT-P-1b , 2011, 1103.0035.

[18]  I. Skillen,et al.  Thermal emission from WASP-33b, the hottest known planet , 2011, 1101.2432.

[19]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[20]  Sara Seager,et al.  THE OPTICAL AND NEAR-INFRARED TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ 1214b: FURTHER EVIDENCE FOR A METAL-RICH ATMOSPHERE , 2011, 1109.0582.

[21]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM THE HOT JUPITER TrES-2b: GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE , 2010, 1005.3027.

[22]  Transits and starspots in the WASP-6 planetary system , 2013, 1503.09184.

[23]  A. Cameron,et al.  Accurate spectroscopic parameters of WASP planet host stars , 2012, 1210.5931.

[24]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[25]  B. Jackson,et al.  RECENT TRANSITS OF THE SUPER-EARTH EXOPLANET GJ 1214b , 2010, 1008.1748.

[26]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[27]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[28]  David Charbonneau,et al.  THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS , 2010, 1012.0518.

[29]  L. J. Richardson,et al.  On the Dayside Thermal Emission of Hot Jupiters , 2005 .

[30]  J. Budaj THE REFLECTION EFFECT IN INTERACTING BINARIES OR IN PLANET–STAR SYSTEMS , 2011 .

[31]  David R. Alexander,et al.  The NEXTGEN Model Atmosphere Grid. II. Spherically Symmetric Model Atmospheres for Giant Stars with Effective Temperatures between 3000 and 6800 K , 1999, astro-ph/9907194.

[32]  Christopher J. Campo,et al.  Thermal emission at 3.6–8 μm from WASP-19b: a hot Jupiter without a stratosphere orbiting an active star , 2011, 1112.5145.

[33]  F. Murgas,et al.  Narrow band Hα photometry of the super-Earth GJ 1214b with GTC/OSIRIS tunable filters , 2012, 1206.6619.

[34]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J , 2010, 1009.0071.

[35]  Stephen R. Kane,et al.  TERMS PHOTOMETRY OF KNOWN TRANSITING EXOPLANETS , 2011, 1108.2308.

[36]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[37]  B. Jackson,et al.  INFRARED ECLIPSES OF THE STRONGLY IRRADIATED PLANET WASP-33b, AND OSCILLATIONS OF ITS HOST STAR , 2012, 1206.0774.

[38]  Nikku Madhusudhan,et al.  CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS , 2011, 1109.3183.

[39]  R. G. West,et al.  WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED , 2010, 1001.0403.

[40]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[41]  M. Asplund,et al.  Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres Comparison with 1D models and HST light curve observations , 2012, 1202.0548.

[42]  Supriya Chakrabarti,et al.  Astronomical data analysis from remote sites , 1988 .

[43]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM TrES-3b: A Ks-BAND DETECTION AND AN H-BAND UPPER LIMIT ON THE DEPTH OF THE SECONDARY ECLIPSE , 2010, 1006.0737.

[44]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[45]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[46]  I. P. Waldmann,et al.  GROUND-BASED NEAR-INFRARED EMISSION SPECTROSCOPY OF HD 189733B , 2011, 1104.0570.

[47]  James F. Kasting,et al.  A PHOTOCHEMICAL MODEL FOR THE CARBON-RICH PLANET WASP-12b , 2011, 1110.2793.

[48]  J. Koppenhoefer,et al.  Optical to near-infrared transit observations of super-Earth GJ 1214b: water-world or mini-Neptune? , 2011, 1111.2628.

[49]  Travis Barman,et al.  GROUND-BASED, NEAR-INFRARED EXOSPECTROSCOPY. II. TENTATIVE DETECTION OF EMISSION FROM THE EXTREMELY HOT JUPITER WASP-12b , 2012, 1201.1023.

[50]  Mercedes Lopez-Morales,et al.  DAY-SIDE z′-BAND EMISSION AND ECCENTRICITY OF WASP-12b , 2009, 0912.2359.

[51]  P. Kabath,et al.  GROUND-BASED NEAR-INFRARED OBSERVATIONS OF THE SECONDARY ECLIPSE OF CoRoT-2b , 2010, 1001.3060.

[52]  Gautam Vasisht,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[53]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[54]  Geronimo L. Villanueva,et al.  NON-DETECTION OF L-BAND LINE EMISSION FROM THE EXOPLANET HD189733b , 2010, 1011.5507.

[55]  Norman Murray,et al.  BROADBAND TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH GJ 1214b SUGGESTS A LOW MEAN MOLECULAR WEIGHT ATMOSPHERE , 2011, 1104.0011.

[56]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[57]  A. Burrows,et al.  Ks-BAND DETECTION OF THERMAL EMISSION AND COLOR CONSTRAINTS TO CoRoT-1b: A LOW-ALBEDO PLANET WITH INEFFICIENT ATMOSPHERIC ENERGY REDISTRIBUTION AND A TEMPERATURE INVERSION* , 2009 .

[58]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[59]  Mercedes Lopez-Morales,et al.  Ground-based secondary eclipse detection of the very-hot Jupiter OGLE-TR-56b , 2009 .

[60]  Takahiro Nagayama,et al.  IRSF SIRIUS JHKs Simultaneous Transit Photometry of GJ1214b , 2012, 1210.3169.

[61]  I. Hubeny,et al.  A theoretical interpretation of the measurements of the secondary eclipses of tres-1 and HD 209458b , 2005 .

[62]  S. Aigrain,et al.  A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720 nm , 2012, 1210.7798.

[63]  E. Jehin,et al.  A Photometric Study of the Hot Exoplanet WASP-19b , 2012, 1212.3553.

[64]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[65]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[66]  L. Observatory,et al.  DETECTION OF KS-BAND THERMAL EMISSION FROM WASP-3b , 2012, 1202.3435.