Simulations of H2O2 concentration profiles in the water surrounding spent nuclear fuel

A simple mathematical model describing the hydrogen peroxide concentration profile in water surrounding a spent nuclear fuel pellet as a function of time has been developed. The water volume is divided into smaller elements, and the processes that affect hydrogen peroxide concentration are applied to each volume element. The model includes production of H2O2 from α-radiolysis, surface reaction between H2O2 and UO2 and diffusion. Simulations show that the surface concentration of H2O2 increases fairly rapidly and approaches the steady-state concentration. The time to reach steady-state is sufficiently short to be neglected compared to the times of interest when simulating spent fuel dissolution under deep repository conditions. Consequently, the steady-state approach can be used to estimate the rate for radiation-induced spent nuclear fuel dissolution.