Minimum weight Euclidean t-spanner is NP-hard

Given a set P of points in the plane, an Euclidean t-spanner for P is a geometric graph that preserves the Euclidean distances between every pair of points in P up to a constant factor t. The weight of a geometric graph refers to the total length of its edges. In this paper we show that the problem of deciding whether there exists an Euclidean t-spanner, for a given set of points in the plane, of weight at most w is NP-hard for every real constant t>1, both whether planarity of the t-spanner is required or not.

[1]  Giri Narasimhan,et al.  A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.

[2]  Rolf Klein,et al.  Computing Geometric Minimum-Dilation Graphs Is NP-Hard , 2006, Graph Drawing.

[3]  Leizhen Cai,et al.  NP-Completeness of Minimum Spanner Problems , 1994, Discret. Appl. Math..

[4]  Dagmar Handke,et al.  NP-Completeness Results for Minimum Planar Spanners , 1998, Discret. Math. Theor. Comput. Sci..

[5]  Joachim Gudmundsson,et al.  On Spanners of Geometric Graphs , 2009, Int. J. Found. Comput. Sci..

[6]  Otfried Cheong,et al.  Computing a minimum-dilation spanning tree is NP-hard , 2008, Comput. Geom..

[7]  Leizhen Cai,et al.  Tree Spanners , 1995, SIAM J. Discret. Math..

[8]  Michiel H. M. Smid,et al.  Computing the Greedy Spanner in Near-Quadratic Time , 2008, Algorithmica.

[9]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[10]  Giri Narasimhan,et al.  Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.

[11]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[12]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1995, Int. J. Comput. Geom. Appl..

[13]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.