Ab initio nonorthogonal valence bond methods

Modern classical valence bond (VB) methods provide clear interpretation and chemical insights by employing covalent and ionic VB structures explicitly. This review focuses on a methodical development of current modern classical VB methods. As a basic method of the classical VB theory, the VB self‐consistent field (VBSCF) method provides a compact wave function, mainly containing static correlation. On the basis of the VBSCF method, the development of classical VB methods can be divided into two aspects—one focuses on improvement of computational accuracy, such as the breathing orbital VB (BOVB), VB configuration interaction (VBCI), and VB second‐order perturbation theory (VBPT2) methods; the other focuses on extending VB approaches to molecules and reactions in solvated or biological environments, including the VB polarizable continuum model (VBPCM), VB solvation model (VBSM), VB effective fragment potential (VBEFP), and VB/molecular mechanics (VB/MM) methods. These improved methods have the advantage of VB theory and provide intuitive chemical insights into medium‐sized chemical problems. Finally, the further development of modern classical VB methods is briefly discussed.

[1]  Peifeng Su,et al.  VBEFP: a valence bond approach that incorporates effective fragment potential method. , 2012, The journal of physical chemistry. A.

[2]  Sason Shaik,et al.  Classical valence bond approach by modern methods. , 2011, Chemical reviews.

[3]  Sason Shaik,et al.  Valence bond perturbation theory. A valence bond method that incorporates perturbation theory. , 2009, The journal of physical chemistry. A.

[4]  William A. Goddard,et al.  The symmetric group and the spin generalized scf method , 2009 .

[5]  Sason Shaik,et al.  Nature of the Fe-O2 bonding in oxy-myoglobin: effect of the protein. , 2008, Journal of the American Chemical Society.

[6]  Donald G Truhlar,et al.  VBSM: a solvation model based on valence bond theory. , 2008, The journal of physical chemistry. A.

[7]  P. Hiberty,et al.  Heterolytic bond dissociation in water: why is it so easy for C4H9Cl but not for C3H9SiCl? , 2008, The journal of physical chemistry. A.

[8]  Wei Wu,et al.  Density embedded VB/MM: a hybrid ab initio VB/MM with electrostatic embedding. , 2008, The journal of physical chemistry. A.

[9]  P. Hiberty,et al.  The Menshutkin reaction in the gas phase and in aqueous solution: a valence bond study. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  C. Cramer,et al.  Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. , 2007, Journal of chemical theory and computation.

[11]  A. Shurki,et al.  Hybrid ab initio VB/MM method--a valence bond ride through classical landscapes. , 2005, The journal of physical chemistry. B.

[12]  Donald G Truhlar,et al.  SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. , 2005, Journal of chemical theory and computation.

[13]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[14]  Wei Wu,et al.  XMVB : A program for ab initio nonorthogonal valence bond computations , 2005, J. Comput. Chem..

[15]  Mark S Gordon,et al.  Solvent effects on the S(N)2 reaction: Application of the density functional theory-based effective fragment potential method. , 2005, The journal of physical chemistry. A.

[16]  Sason Shaik,et al.  Valence bond calculations of hydrogen transfer reactions: a general predictive pattern derived from theory. , 2004, Journal of the American Chemical Society.

[17]  Sason Shaik,et al.  Valence Bond Theory, Its History, Fundamentals, and Applications: A Primer , 2004 .

[18]  Sason Shaik,et al.  VBPCM: A Valence Bond Method that Incorporates a Polarizable Continuum Model , 2004 .

[19]  Yirong Mo,et al.  Charge transfer in the electron donor-acceptor complex BH3NH3. , 2004, Journal of the American Chemical Society.

[20]  Wei Wu,et al.  A practical valence bond method: A configuration interaction method approach with perturbation theoretic facility , 2004, J. Comput. Chem..

[21]  Vinzenz Bachler,et al.  A simple computational scheme for obtaining localized bonding schemes and their weights from a CASSCF wave function , 2004, J. Comput. Chem..

[22]  Sason Shaik,et al.  An accurate barrier for the hydrogen exchange reaction from valence bond theory: is this theory coming of age? , 2003, Chemistry.

[23]  Yirong Mo,et al.  Geometrical optimization for strictly localized structures , 2003 .

[24]  Maurizio Sironi,et al.  Chapter 9 – Recent developments of the SCVB method , 2002 .

[25]  David L. Cooper,et al.  Chapter 2 - Modern Valence Bond Description of Gas-Phase Pericyclic Reactions , 2002 .

[26]  Sason Shaik,et al.  Breathing-orbital valence bond method – a modern valence bond method that includes dynamic correlation , 2002 .

[27]  Sason Shaik,et al.  Valence bond modeling of barriers in the nonidentity hydrogen abstraction reactions, X'. + H-X → X'-H + X (X' ≠ X = CH3, SiH3, GeH3, SnH3, PbH3) , 2002 .

[28]  A. A. Zavitsas Comment on “Identity Hydrogen Abstraction Reactions, X• + H−X‘ → X−H + X‘• (X = X‘ = CH3, SiH3, GeH3, SnH3, PbH3): A Valence Bond Modeling” , 2002 .

[29]  D. L. Cooper,et al.  Spin‐coupled Theory , 2002 .

[30]  Sason Shaik,et al.  Valence bond configuration interaction: A practical ab initio valence bond method that incorporates dynamic correlation , 2002 .

[31]  Sason Shaik,et al.  Identity Hydrogen Abstraction Reactions, X• + H−X‘ → X−H + X‘• (X = X‘ = CH3, SiH3, GeH3, SnH3, PbH3): A Valence Bond Modeling , 2001 .

[32]  Jan H. Jensen,et al.  QM/MM Boundaries Across Covalent Bonds: A Frozen Localized Molecular Orbital-Based Approach for the Effective Fragment Potential Method , 2000 .

[33]  V. Bachler,et al.  The photochemistry of 1,3-butadiene rationalized by means of theoretical resonance structures and their weights , 2000, Chemistry.

[34]  Y. Mo,et al.  An ab initio molecular orbital-valence bond (MOVB) method for simulating chemical reactions in solution , 2000 .

[35]  C. Cramer,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. , 1999, Chemical reviews.

[36]  Y. Mo,et al.  A simple electrostatic model for trisilylamine: Theoretical examinations of the n ->sigma* negative hyperconjugation, p pi -> d pi bonding, and stereoelectronic interaction , 1999 .

[37]  S. Shaik,et al.  Valence Bond Diagrams and Chemical Reactivity. , 1999, Angewandte Chemie.

[38]  Y. Mo,et al.  Theoretical analysis of electronic delocalization , 1998 .

[39]  Benedetta Mennucci,et al.  New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals , 1998 .

[40]  R. Friesner,et al.  Accurate quantum chemical calculation of the relative energetics of C20 carbon clusters via localized multireference perturbation calculations , 1998 .

[41]  Jacopo Tomasi,et al.  Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications , 1997 .

[42]  Jacopo Tomasi,et al.  A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics , 1997 .

[43]  D. L. Cooper,et al.  Modern Valence Bond Theory , 1997 .

[44]  Richard A. Friesner,et al.  Pseudospectral localized generalized Mo/ller–Plesset methods with a generalized valence bond reference wave function: Theory and calculation of conformational energies , 1997 .

[45]  Michel Dupuis,et al.  A complete active space valence bond (CASVB) method , 1996 .

[46]  David L. Cooper,et al.  Optimized spin-coupled virtual orbitals , 1996 .

[47]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[48]  Yirong Mo,et al.  Bond-Distorted Orbitals and Effects of Hybridization and Resonance on C−C Bond Lengths , 1996 .

[49]  Richard A. Friesner,et al.  Pseudospectral localized Mo/ller–Plesset methods: Theory and calculation of conformational energies , 1995 .

[50]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[51]  Philippe C. Hiberty,et al.  Compact valence bond functions with breathing orbitals: Application to the bond dissociation energies of F2 and FH , 1994 .

[52]  David L. Cooper,et al.  STUDY OF THE ELECTRONIC STATES OF THE BENZENE MOLECULE USING SPIN-COUPLED VALENCE BOND THEORY , 1994 .

[53]  Richard A. Friesner,et al.  Pseudospectral contracted configuration interaction from a generalized valence bond reference , 1994 .

[54]  A. Warshel,et al.  Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches , 1993 .

[55]  David L. Cooper,et al.  Expansion of the spin-coupled wavefunction in Slater determinants , 1993 .

[56]  Philippe C. Hiberty,et al.  Compact and accurate valence bond functions with different orbitals for different configurations: application to the two-configuration description of F2 , 1992 .

[57]  G. Trinquier,et al.  Trends in electron-deficient bridges , 1991 .

[58]  Robert B. Murphy,et al.  Generalized Møller—Plesset perturbation theory applied to general MCSCF reference wave functions , 1991 .

[59]  G. Trinquier,et al.  Valence-bond reading of a correlated wave function. Bonding in diborane reappraised , 1991 .

[60]  P. Karafiloglou,et al.  Understanding molecular orbital wave functions in terms of resonance structures , 1991 .

[61]  D. L. Cooper,et al.  Applications of Spin-Coupled Valence Bond Theory , 1991 .

[62]  D. L. Cooper,et al.  The Spin-Coupled Valence Bond Description of Benzenoid Aromatic Molecules , 1990, Advances in the Theory of Benzenoid Hydrocarbons.

[63]  W. Goddard,et al.  Correlation‐consistent configuration interaction: Accurate bond dissociation energies from simple wave functions , 1988 .

[64]  J. Malrieu,et al.  The effect of electronic correlation on molecular wavefunctions , 1986 .

[65]  J. H. van Lenthe,et al.  The valence‐bond self‐consistent field method (VB–SCF): Theory and test calculations , 1983 .

[66]  Sason Shaik,et al.  What happens to molecules as they react? A valence bond approach to reactivity , 1981 .

[67]  J. H. van Lenthe,et al.  The valence-bond scf (VB SCF) method.: Synopsis of theory and test calculation of oh potential energy curve , 1980 .

[68]  A. Warshel,et al.  An empirical valence bond approach for comparing reactions in solutions and in enzymes , 1980 .

[69]  William A. Goddard,et al.  The Description of Chemical Bonding From AB Initio Calculations , 1978 .

[70]  P. Hiberty,et al.  Expansion of molecular orbital wave functions into valence bond wave functions. A simplified procedure , 1978 .

[71]  W. Goddard,et al.  Generalized valence bond description of bonding in low-lying states of molecules , 1973 .

[72]  G. Gallup,et al.  Population analyses of valence-bond wavefunctions and BeH2 , 1973 .

[73]  William A. Goddard,et al.  IMPROVED QUANTUM THEORY OF MANY-ELECTRON SYSTEMS. II. THE BASIC METHOD. , 1967 .

[74]  B. H. Chirgwin,et al.  The electronic structure of conjugated systems. VI , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[75]  E. Condon The Theory of Groups and Quantum Mechanics , 1932 .

[76]  P. Hiberty,et al.  A primer on qualitative valence bond theory – a theory coming of age , 2011 .

[77]  Sylvio Canuto,et al.  Solvation effects on molecules and biomolecules : computational methods and applications , 2008 .

[78]  Roberto Cammi,et al.  Continuum solvation models in chemical physics : from theory to applications , 2007 .

[79]  Jan H. Jensen,et al.  Chapter 10 The Effective Fragment Potential: A General Method for Predicting Intermolecular Interactions , 2007 .

[80]  R. Bianco,et al.  Valence Bond Multistate Approach to Chemical Reactions in Solution , 2002 .

[81]  Mark S. Gordon,et al.  The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry , 2001 .

[82]  Y. Mo,et al.  Ab initio QM/MM simulations with a molecular orbital-valence bond (MOVB) method: application to an SN2 reaction in water , 2000, J. Comput. Chem..

[83]  David L. Cooper,et al.  Ab Initio Modern Valence Bond Theory , 1999 .

[84]  David L. Cooper,et al.  Modern VB representations of CASSCF wave functions and the fully-variational optimization of modern VB wave functions using the CASVB strategy , 1998 .

[85]  D. L. B. L. London KLUWER ACADEMIC PUBLISHERS , 1995 .

[86]  Mark S. Gordon,et al.  Effective Fragment Method for Modeling Intermolecular Hydrogen-Bonding Effects on Quantum Mechanical Calculations , 1994 .

[87]  David L. Cooper,et al.  Spin-coupled valence bond theory , 1988 .

[88]  W. Goddard,et al.  The Self-Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree—Fock Wave Functions , 1977 .

[89]  J. Gerratt,et al.  General Theory of Spin-Coupled Wave Functions for Atoms and Molecules , 1971 .

[90]  H. C. Longuet-Higgins,et al.  The electronic structure of conjugated systems. , 1948, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.