Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions.

The mineral greigite presents similar surface structures to the active sites found in many modern-day enzymes. We show that particles of greigite can reduce CO2 under ambient conditions into chemicals such as methanol, formic, acetic and pyruvic acid. Our results also lend support to the Origin of Life theory on alkaline hydrothermal vents.

[1]  Amy S. Mullin,et al.  Suitability of Technology-Driven Research for the Journal of Physical Chemistry C , 2017 .

[2]  C. Catlow,et al.  Active Nature of Primary Amines during Thermal Decomposition of Nickel Dithiocarbamates to Nickel Sulfide Nanoparticles , 2014 .

[3]  A. Yamaguchi,et al.  Electrochemical CO2 Reduction by Ni-containing Iron Sulfides: How Is CO2 Electrochemically Reduced at Bisulfide-Bearing Deep-sea Hydrothermal Precipitates? , 2014 .

[4]  N. D. de Leeuw,et al.  A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe₃O₄. , 2014, Physical chemistry chemical physics : PCCP.

[5]  T. Nann,et al.  Copper-Doped CdSe/ZnS Quantum Dots: Controllable Photoactivated Copper(I) Cation Storage and Release Vectors for Catalysis , 2013, Angewandte Chemie.

[6]  E. Milner-White,et al.  On the antiquity of metalloenzymes and their substrates in bioenergetics. , 2013, Biochimica et biophysica acta.

[7]  W. Martin,et al.  The Origin of Membrane Bioenergetics , 2012, Cell.

[8]  Hye-Kyung Kim,et al.  Clostridium carboxidivorans Strain P7T Recombinant Formate Dehydrogenase Catalyzes Reduction of CO2 to Formate , 2012, Applied and Environmental Microbiology.

[9]  Raffaele Saladino,et al.  Formamide and the origin of life. , 2012, Physics of life reviews.

[10]  W. Weigand,et al.  Efficient activation of the greenhouse gas CO2. , 2011, Angewandte Chemie.

[11]  M. Hidai,et al.  Catalytic functions of cubane-type M4S4 clusters , 2011 .

[12]  W. Martin,et al.  Hydrothermal vents and the origin of life , 2008, Nature Reviews Microbiology.

[13]  T. Reda,et al.  Reversible interconversion of carbon dioxide and formate by an electroactive enzyme , 2008, Proceedings of the National Academy of Sciences.

[14]  W. Martin,et al.  On the origin of biochemistry at an alkaline hydrothermal vent , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Dieter Braun,et al.  Extreme accumulation of nucleotides in simulated hydrothermal pore systems , 2007, Proceedings of the National Academy of Sciences.

[16]  G. Wächtershäuser,et al.  On the Chemistry and Evolution of the Pioneer Organism , 2007, Chemistry & biodiversity.

[17]  J. Seewald,et al.  Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. , 2007, Chemical reviews.

[18]  M. Lilley,et al.  Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer , 2006 .

[19]  Y. Amao,et al.  Photochemical and enzymatic synthesis of formic acid from CO2 with chlorophyll and dehydrogenase system , 2006 .

[20]  Eugene V Koonin,et al.  On the origin of genomes and cells within inorganic compartments , 2005, Trends in Genetics.

[21]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[22]  V. A. Otroshchenko,et al.  Electrochemical Reduction of Carbon Dioxide on Pyrite as a Pathway for Abiogenic Formation of Organic Molecules , 2004, Origins of life and evolution of the biosphere.

[23]  W. Martin,et al.  The rocky roots of the acetyl-CoA pathway. , 2004, Trends in biochemical sciences.

[24]  H. Dobbek,et al.  Carbon monoxide induced decomposition of the active site [Ni-4Fe-5S] cluster of CO dehydrogenase. , 2004, Journal of the American Chemical Society.

[25]  Thomas M. McCollom,et al.  Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate , 2003 .

[26]  D. Butterfield,et al.  30,000 Years of Hydrothermal Activity at the Lost City Vent Field , 2003, Science.

[27]  W. Martin,et al.  On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  Julyan H. E. Cartwright,et al.  Formation of Chemical Gardens , 2002 .

[29]  Deborah S. Kelley,et al.  Volcanoes, Fluids, and Life at Mid-Ocean Ridge Spreading Centers , 2002 .

[30]  R. Huber,et al.  Crystal Structure of a Carbon Monoxide Dehydrogenase Reveals a [Ni-4Fe-5S] Cluster , 2001, Science.

[31]  M. Russell,et al.  The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front , 1997, Journal of the Geological Society.

[32]  A. Lauwers,et al.  Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment , 1996, Origins of life and evolution of the biosphere.

[33]  R. Daniel,et al.  A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life , 1994, Journal of Molecular Evolution.

[34]  M. Russell,et al.  Hydrothermal and oceanic pH conditions of possible relevance to the origin of life , 1994, Origins of life and evolution of the biosphere.

[35]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[36]  Journal of Chemical Physics , 1932, Nature.

[37]  A. Mulkidjanian,et al.  Origins of Life: The Primal Self-Organisation , 2011 .

[38]  M. W. Roberts,et al.  Surface chemistry of carbon dioxide , 1996 .

[39]  Susan E. Humphris,et al.  Seafloor hydrothermal systems : physical, chemical, biological, and geological interactions , 1995 .

[40]  Jan Paul Pradier,et al.  Carbon dioxide chemistry : environmental issues , 1994 .

[41]  G. Wächtershäuser,et al.  Groundworks for an evolutionary biochemistry: the iron-sulphur world. , 1992, Progress in biophysics and molecular biology.

[42]  Physical Review , 1965, Nature.