Developing novel liquid crystal technologies for display and photonic applications

Abstract Modern liquid crystal displays (LCDs) require novel technologies, such as new alignment methods to eliminate alignment layers, fast response and long operation time. To this end, we report an overview of recent efforts in LCD technologies devoted to realize more display modes having no alignment layer, faster switching time and low battery consumption. In particular, we overview recent advances on the liquid crystals (LCs) alignment for display applications, which includes superfine nanostructures, polymeric microchannels and polymer stabilized LCs. Furthermore, we analyze the main optical and electro-optical properties of new generation LCDs displays addressing a particular attention to LCs blue phase hosting gold nanoparticles. Moreover, we focus on the progress of electrofluidic displays, which demonstrates characteristics that are similar to LCDs, with attention on various pixel designs, operation principles and possible future trends of the technology.

[1]  Masahito Oh-e,et al.  Advanced nanoimprint lithography using a graded functional imprinting material tailored for liquid crystal alignment , 2007 .

[2]  Hong Koo Baik,et al.  Orientational Transition of Liquid Crystal Molecules by a Photoinduced Transformation Process into a Recovery‐free Silicon Oxide Layer , 2008 .

[3]  D. W. Berreman,et al.  Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal , 1972 .

[4]  Nan Zhang,et al.  Optical properties of ultrafine line and space polymeric nanogratings coated with metal and metal–dielectric–metal thin films , 2014, Nanotechnology.

[5]  Sampath Purushothaman,et al.  Atomic-beam alignment of inorganic materials for liquid-crystal displays , 2001, Nature.

[6]  Hsin-Hung Lee,et al.  19‐1: A Novel Electrowetting‐based Display for Future Smart Window Application , 2011 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[9]  Wayne M. Gibbons,et al.  Surface-mediated alignment of nematic liquid crystals with polarized laser light , 1991, Nature.

[10]  Shin-Tson Wu,et al.  Fundamentals of Liquid Crystal Devices , 2006 .

[11]  S. Chou,et al.  Nanoimprint Lithography , 2010 .

[12]  John A Rogers,et al.  Molecular-scale soft imprint lithography for alignment layers in liquid crystal devices. , 2007, Nano letters.

[13]  Deng-Ke Yang,et al.  Review of operating principle and performance of polarizer‐free reflective liquid‐crystal displays , 2008 .

[14]  Kaushik Balakrishnan,et al.  Patterned cholesteric liquid crystal polymer film. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Wei Wu,et al.  Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography , 2004 .

[16]  Wei Lee,et al.  Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures. , 2011, Optics express.

[17]  Byeong Kwon Ju,et al.  Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography , 2011 .

[18]  Cesare Umeton,et al.  Characterization of an active control system for holographic setup stabilization. , 2008, Applied optics.

[19]  Dirk J. Broer,et al.  Patterned alignment of liquid crystals , 2004, IS&T/SPIE Electronic Imaging.

[20]  Wei Lee,et al.  Fast-switching bistable cholesteric intensity modulator. , 2011, Optics express.

[21]  Hoi Sing Kwok,et al.  Properties of azo‐dye alignment layer on plastic substrates , 2005 .

[22]  Ming Xu,et al.  Dual Frequency Cholesteric Light Shutters , 1997 .

[23]  Xiao Wei Sun,et al.  Nanoimprinted ultrafine line and space nanogratings for liquid crystal alignment , 2012, Nanotechnology.

[24]  Chung-Lung Chen,et al.  Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization , 2013 .

[25]  Liang-Chy Chien,et al.  Cholesteric liquid crystal/polymer dispersion for haze‐free light shutters , 1992 .

[26]  Jinghua Teng,et al.  Single-material-based multilayered nanostructures fabrication via reverse thermal nanoimprinting , 2011 .

[27]  Cheng-Che Wu,et al.  Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter , 2011 .

[28]  Hong Koo Baik,et al.  Novel alignment mechanism of liquid crystal on a hydrogenated amorphous silicon oxide. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[29]  Giuseppe Strangi,et al.  Soft periodic microstructures containing liquid crystals. , 2013, The journal of physical chemistry. B.

[30]  Nelson V. Tabiryan,et al.  Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings , 2011 .

[31]  Shin-Tson Wu,et al.  Reflective reversed-mode polymer stabilized cholesteric texture light switches , 2002 .

[32]  Noel A. Clark,et al.  Alignment of liquid crystals by topographically patterned polymer films prepared by nanoimprint lithography , 2007 .

[33]  Jae-Hoon Kim,et al.  Liquid crystal alignment with a molecular template of imprinted polymer layer during phase separation , 2006 .

[34]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[35]  Giuseppe Strangi,et al.  Universal soft matter template for photonic applications , 2011 .

[36]  Ming Xu,et al.  Electrooptical Properties of Dual-Frequency Cholesteric Liquid Crystal Reflective Display and Drive Scheme , 1999 .

[37]  D. W. Berreman,et al.  Alignment of Liquid Crystals by Grooved Surfaces , 1973 .

[39]  Shin-Tson Wu,et al.  Polymer-stabilized blue phase liquid crystals: a tutorial [Invited] , 2011 .

[40]  Hirotsugu Kikuchi,et al.  Electrooptic response of liquid crystalline blue phases with different chiral pitches , 2011 .

[41]  Hiroyuki Okada,et al.  Liquid crystal device with 50 nm nanogroove structure fabricated by nanoimprint lithography , 2010 .

[42]  Yang-Ming Zhu,et al.  BISTABLE CHOLESTERIC REFLECTIVE DISPLAYS:Materials and Drive Schemes , 1997 .

[43]  Hoi Sing Kwok,et al.  Photoaligned Vertical Aligned Nematic Mode in Liquid Crystals , 2004 .

[44]  Shin-Woong Kang,et al.  Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal , 2012 .

[45]  Steve Smith,et al.  8.1: Invited Paper: A High‐Brightness Electrofluidic Display Film , 2012 .

[46]  Liang-Chy Chien,et al.  Electrically reconfigurable and thermally sensitive optical properties of gold nanorods dispersed liquid crystal blue phase , 2011 .

[47]  Shin-Tson Wu,et al.  Reflective Liquid Crystal Displays , 2001 .

[48]  L. Guo,et al.  Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. , 2009, ACS nano.

[49]  Oleg D. Lavrentovich,et al.  Tilted photoalignment of a nematic liquid crystal induced by a magnetic field , 1998 .

[50]  James A. Lacey,et al.  Atomic Beam Alignment of Liquid Crystals , 1998 .

[51]  Chang-Pin Chou,et al.  Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process , 2008 .

[52]  Shin-Tson Wu,et al.  Dual frequency liquid crystals: a review , 2009 .

[53]  John L. Janning Thin film surface orientation for liquid crystals , 1972 .

[54]  Henri Jagt,et al.  16.2: A Fully Flexible Colour Display , 2004 .

[55]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[56]  Andrew J. Steckl,et al.  Versatile electrowetting arrays for smart window applications-from small to large pixels on fixed and flexible substrates , 2013 .

[57]  Ji Ma,et al.  Towards nanoscale molecular switch-based liquid crystal displays , 2013, Displays.

[58]  Lei Shi,et al.  Bistable Polymer Stabilized Cholesteric Texture Light Shutter , 2009 .

[59]  Taro Kimura,et al.  Resin micromachining by roller hot embossing , 2008 .

[60]  Nelson V. Tabiryan,et al.  Spontaneous radial liquid crystals alignment on curved polymeric surfaces , 2014 .

[61]  Jinghua Teng,et al.  New approach for multilayered microstructures fabrication based on a water-soluble backing substrate. , 2013, ACS applied materials & interfaces.

[62]  Karlheinz Blankenbach,et al.  P‐112: Sunlight Readable Bistable Electrowetting Displays for Indicators and Billboards , 2011 .

[63]  N. David Mermin,et al.  Crystalline liquids: the blue phases , 1989 .

[64]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[65]  R. Caputo,et al.  Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material. , 2004, Optics letters.

[66]  Giuseppe Strangi,et al.  Directed organization of DNA filaments in a soft matter template. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[67]  Tae-Hoon Yoon,et al.  Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure. , 2012, Optics express.

[68]  Yong Li,et al.  A study of lasing wavelength by DOS in the temperature-tunable cholesteric liquid crystal lasers , 2013 .