A novel algorithm for fast and scalable subspace clustering of high-dimensional data
暂无分享,去创建一个
[1] Hans-Peter Kriegel,et al. Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..
[2] Arthur Zimek,et al. Clustering High-Dimensional Data , 2018, Data Clustering: Algorithms and Applications.
[3] René Vidal,et al. Multiframe Motion Segmentation with Missing Data Using PowerFactorization and GPCA , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..
[4] Parag Kulkarni,et al. Algorithm to determine ε-distance parameter in density based clustering , 2014, Expert Syst. Appl..
[5] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[6] Jonathan Goldstein,et al. When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.
[7] Arthur Zimek,et al. A survey on enhanced subspace clustering , 2013, Data Mining and Knowledge Discovery.
[8] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[9] Yi Zhang,et al. Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.
[10] Thomas Seidl,et al. Finding density-based subspace clusters in graphs with feature vectors , 2012, Data Mining and Knowledge Discovery.
[11] P. Erdös,et al. The distribution of the number of summands in the partitions of a positive integer , 1941 .
[12] D. Botstein,et al. Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[13] D. Zhang,et al. Principle Component Analysis , 2004 .
[14] R. Schilizzi. The Square Kilometre Array , 2006, Proceedings of the International Astronomical Union.
[15] Amitava Datta,et al. SUBSCALE: Fast and Scalable Subspace Clustering for High Dimensional Data , 2014, 2014 IEEE International Conference on Data Mining Workshop.
[16] Hinrich Schütze,et al. Introduction to information retrieval , 2008 .
[17] Richard T. Schilizzi,et al. The Square Kilometre Array , 2009, Proceedings of the IEEE.
[18] Vipin Kumar,et al. The Challenges of Clustering High Dimensional Data , 2004 .
[19] Heikki Mannila,et al. Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.
[20] Ronen Basri,et al. Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[21] Sean R. Davis,et al. NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..
[22] Ira Assent,et al. DUSC: Dimensionality Unbiased Subspace Clustering , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).
[23] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[24] Charu C. Aggarwal,et al. Data Clustering , 2013 .
[25] Hans-Peter Kriegel,et al. A generic framework for efficient subspace clustering of high-dimensional data , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[26] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[27] Ira Assent,et al. INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[28] David J. Kriegman,et al. Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[29] Myoung-Ho Kim,et al. FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting , 2004, Inf. Softw. Technol..
[30] Ira Assent,et al. Evaluating Clustering in Subspace Projections of High Dimensional Data , 2009, Proc. VLDB Endow..
[31] Tian Zhang,et al. BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.
[32] Woncheol Jang,et al. Cluster analysis of massive datasets in astronomy , 2007, Stat. Comput..
[33] Andreas Geiger,et al. Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..
[34] Charu C. Aggarwal,et al. Data Clustering: Algorithms and Applications , 2014 .
[35] Rui Xu,et al. Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.
[36] Philip S. Yu,et al. Fast algorithms for projected clustering , 1999, SIGMOD '99.
[37] R. Vidal,et al. Sparse Subspace Clustering: Algorithm, Theory, and Applications. , 2013, IEEE transactions on pattern analysis and machine intelligence.
[38] Aidong Zhang,et al. Cluster analysis for gene expression data: a survey , 2004, IEEE Transactions on Knowledge and Data Engineering.
[39] Luca Benini,et al. Discovering coherent biclusters from gene expression data using zero-suppressed binary decision diagrams , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[40] George M. Church,et al. Biclustering of Expression Data , 2000, ISMB.
[41] Alok N. Choudhary,et al. Adaptive Grids for Clustering Massive Data Sets , 2001, SDM.
[42] Huan Liu,et al. Subspace clustering for high dimensional data: a review , 2004, SKDD.
[43] E. M. Wright,et al. Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.
[44] Stanley M. Bileschi,et al. Street Scenes: towards scene understanding in still images , 2006 .
[45] Dennis McLeod,et al. Subspace Clustering of Microarray Data Based on Domain Transformation , 2006, VDMB.
[46] Olga G. Troyanskaya,et al. Detailing regulatory networks through large scale data integration , 2009, Bioinform..
[47] H. Deutsch. Principle Component Analysis , 2004 .
[48] Shengcai Liao,et al. Pedestrian Attribute Classification in Surveillance: Database and Evaluation , 2013, 2013 IEEE International Conference on Computer Vision Workshops.
[49] Mehmet Deveci,et al. A comparative analysis of biclustering algorithms for gene expression data , 2013, Briefings Bioinform..
[50] Hans-Peter Kriegel,et al. Density-Connected Subspace Clustering for High-Dimensional Data , 2004, SDM.
[51] Tao Li,et al. Document clustering via adaptive subspace iteration , 2004, SIGIR '04.
[52] Junbin Gao,et al. Subspace Clustering for Sequential Data , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.
[53] Han Liu,et al. Challenges of Big Data Analysis. , 2013, National science review.