An Optically Powered Single-Channel Stimulation Implant as Test System for Chronic Biocompatibility and Biostability of Miniaturized Retinal Vision Prostheses

A microsystem based microimplant with an optically powered single-channel stimulator was designed and developed as test system for an epi-retinal vision implant. Biostability of the hybrid assembly and the encapsulation materials were evaluated in pilot experiments in chronic implantations in a cat animal model. The implant was fabricated on a flexible polyimide substrate with integrated platinum electrode, interconnection lines, and contact pads for hybrid integration of electronic components. The receiver part was realized with four photodiodes connected in series. A parylene C coating was deposited on the electronic components as insulation layer. Silicone rubber was used to encapsulate the electronics in the shape of an artificial intraocular lens to allow proper implantation in the eye. Pilot experiments showed the biostability of the encapsulation approach and full electric functionality of the microimplant to generate stimulation currents over the implantation period of three months in two cats. In one cat, electrical stimulation of the retina evoked neuronal responses in the visual cortex and indicated the feasibility of the system approach for chronic use

[1]  G. Whitesides,et al.  Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. , 2002, Accounts of chemical research.

[2]  Benoît Gérard,et al.  Pattern recognition with the optic nerve visual prosthesis. , 2003, Artificial organs.

[3]  Thomas Schanze,et al.  Implantation and testing of subretinal film electrodes in domestic pigs. , 2006, Experimental eye research.

[4]  W. F. Gorham A New, General Synthetic Method for the Preparation of Linear Poly‐p‐xylylenes , 1966 .

[5]  T. Stieglitz,et al.  Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces , 2000 .

[6]  S. B. Brummer,et al.  Electrochemical Considerations for Safe Electrical Stimulation of the Nervous System with Platinum Electrodes , 1977, IEEE Transactions on Biomedical Engineering.

[7]  H Kasanuki,et al.  Contact Sensitivity to Polychloroparaxylene‐Coated Cardiac Pacemaker , 1997, Pacing and clinical electrophysiology : PACE.

[8]  Wilfried Mokwa,et al.  Development of a Completely Encapsulated Intraocular Pressure Sensor , 2000, Ophthalmic Research.

[9]  J. Noordegraaf,et al.  Conformal coating using parylene polymers. , 1997, Medical device technology.

[10]  Thomas Schanze,et al.  Visual resolution with retinal implants estimated from recordings in cat visual cortex , 2006, Vision Research.

[11]  R. Eckmiller Learning retina implants with epiretinal contacts. , 1997, Ophthalmic research.

[12]  Joseph F. Rizzo,et al.  Ocular implants for the blind , 1996 .

[13]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[14]  W. H. Dobelle Artificial vision for the blind by connecting a television camera to the visual cortex. , 2000, ASAIO journal.

[15]  Thomas Schanze,et al.  Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[16]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[17]  C. Veraart,et al.  Vision rehabilitation in the case of blindness , 2004, Expert review of medical devices.

[18]  C K Jung,et al.  Decentration and tilt: silicone multifocal versus acrylic soft intraocular lenses , 2000, Journal of cataract and refractive surgery.

[19]  Yoshiki Uchikawa,et al.  Development of Artificial Retina Using Cultured Neural Cells and Photoelectric Device: A Study on Electric Current with Membrane Model , 1997, ICONIP.

[20]  Nigel H. Lovell,et al.  Phosphene vision: development of a portable visual prosthesis system for the blind , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[21]  C. Curcio,et al.  Photoreceptor loss in age-related macular degeneration. , 1996, Investigative ophthalmology & visual science.

[22]  D D Clowes,et al.  A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. , 1993, Archives of ophthalmology.

[23]  C. Kufta,et al.  Visuotopic mapping through a multichannel stimulating implant in primate V1. , 2005, Journal of neurophysiology.

[24]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[25]  T. Stieglitz,et al.  High density interconnects and flexible hybrid assemblies for active biomedical implants , 2001 .

[26]  D Hickingbotham,et al.  Bipolar surface electrical stimulation of the vertebrate retina. , 1994, Archives of ophthalmology.

[27]  Thomas Schanze,et al.  Activation zones in cat visual cortex evoked by electrical retina stimulation , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[28]  M F Nichols Flexible and insulative Plasmalene wire coatings for biomedical applications. , 1993, Biomedical sciences instrumentation.

[29]  U. Eysel,et al.  Cortical activation via an implanted wireless retinal prosthesis. , 2005, Investigative ophthalmology & visual science.

[30]  S. Kelly,et al.  Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. , 2003, Investigative ophthalmology & visual science.

[31]  A. Y. Chow,et al.  Implantation of silicon chip microphotodiode arrays into the cat subretinal space , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[32]  Thomas Stieglitz,et al.  Biomedical Microdevices for Neural Implants , 2006 .

[33]  A. Milam,et al.  Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. , 1999, Investigative ophthalmology & visual science.

[34]  T. Schanze,et al.  Towards the cortical representation of form and motion stimuli generated by a retina implant , 2003, Graefe's Archive for Clinical and Experimental Ophthalmology.

[35]  S. Kelly,et al.  Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. , 2003, Investigative ophthalmology & visual science.

[36]  K Heimann,et al.  Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. , 1999, Retina.

[37]  Nichols Mf Flexible and insulative Plasmalene wire coatings for biomedical applications. , 1993 .

[38]  V. Klauss,et al.  Epidemiology of blindness and eye disease. , 1996, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[39]  G. Loeb,et al.  Parylene as a Chronically Stable, Reproducible Microelectrode Insulator , 1977, IEEE Transactions on Biomedical Engineering.

[40]  J M Legeais,et al.  A second generation of artificial cornea (Biokpro II). , 1998, Biomaterials.

[41]  T. Yuen,et al.  Tissue response to potential neuroprosthetic materials implanted subdurally. , 1987, Biomaterials.

[42]  R. Lüdtke,et al.  Blindness Incidence in Germany , 1999, Ophthalmologica.

[43]  Helmut G. Sachs,et al.  Subretinal Chronic Active Visual Prostheses in Blind Patients: The Transchoroidal Surgical Procedure , 2006 .

[44]  Mohamad Sawan,et al.  A power efficient electronic implant for a visual cortical neuroprosthesis. , 2005, Artificial organs.

[45]  John W. Morley,et al.  Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex , 2005, Journal of Clinical Neuroscience.

[46]  S. B. Brummer,et al.  Electrical stimulation of the nervous system: The principle of safe charge injection with noble metal electrodes , 1975 .

[47]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[48]  J. Weiland,et al.  Perceptual thresholds and electrode impedance in three retinal prosthesis subjects , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[49]  Eduardo Fernández,et al.  TOWARDS A CORTICAL VISUAL NEUROPROSTHESIS FOR THE BLIND , 2002 .

[50]  J. Weiland,et al.  Pattern electrical stimulation of the human retina , 1999, Vision Research.

[51]  E. Schmidt,et al.  Laser exposure of Parylene-C insulated microelectrodes , 1995, Journal of Neuroscience Methods.

[52]  J. L. Stone,et al.  Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. , 1992, Archives of ophthalmology.

[53]  J. Wyatt,et al.  REVIEW ■ : Prospects for a Visual Prosthesis , 1997 .