Grain-size-insensitive dielectric properties of Sr0.6Ba0.4Nb2O6 relaxor ferroelectric ceramics with tetragonal tungsten bronze structure

[1]  L. Martin,et al.  Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films , 2020, Science.

[2]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[3]  Fei Li,et al.  Perovskite lead-free dielectrics for energy storage applications , 2019, Progress in Materials Science.

[4]  Longtu Li,et al.  High‐Performance Relaxor Ferroelectric Materials for Energy Storage Applications , 2019, Advanced Energy Materials.

[5]  W. Hong,et al.  Grain‐size–dependent dielectric properties in nanograin ferroelectrics , 2018, Journal of the American Ceramic Society.

[6]  S. Fujihara,et al.  Grain size effect on electrical properties of Mn-modified 0.67BiFeO3-0.33BaTiO3 lead-free piezoelectric ceramics , 2016 .

[7]  T. Grande,et al.  Origin of ferroelectric polarization in tetragonal tungsten-bronze-type oxides , 2016 .

[8]  S. Fujihara,et al.  Grain size effect on phase transition behavior and electrical properties of (Bi1/2K1/2)TiO3 piezoelectric ceramics , 2015 .

[9]  S. Fujihara,et al.  Grain-size-dependent spontaneous relaxor-to-ferroelectric phase transition in (Bi 1/2 K 1/2 )TiO 3 ceramics , 2015 .

[10]  Genshui Wang,et al.  Effect of grain size on phase transition, dielectric and pyroelectric properties of BST ceramics , 2014 .

[11]  Hanxing Liu,et al.  Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics , 2014 .

[12]  Frede Blaabjerg,et al.  Reliability of Capacitors for DC-Link Applications in Power Electronic Converters—An Overview , 2014, IEEE Transactions on Industry Applications.

[13]  T. Łukasiewicz,et al.  Temperature dependence of lattice parameters of SBN single crystals in the vicinity of their structural phase transitions , 2013 .

[14]  T. Yamazaki,et al.  Grain Size Effect on Dielectric Properties of Ba(Zr,Ti)O3 Ceramics , 2012 .

[15]  V. Shvartsman,et al.  Lead-Free Relaxor Ferroelectrics , 2012 .

[16]  R. Guo,et al.  Raman spectral studies of Zr4+-rich BaZrxTi1-xO3(0.5⩽x⩽1.00) phase diagram , 2009 .

[17]  B. Dkhil,et al.  Dielectric evidences of core-shell-like effects in nanosized relaxor PbMg1∕3Nb2∕3O3 , 2008 .

[18]  Tadeusz Lukasiewicz,et al.  Strontium barium niobate single crystals, growth and ferroelectric properties , 2008 .

[19]  Longtu Li,et al.  Preparation and Properties of Fine-Grain (1−x)BiScO3−xPbTiO3 Ceramics by Two-Step Sintering , 2007 .

[20]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[21]  R. Waser,et al.  Raman scattering studies on nanocrystalline BaTiO3 Part II—consolidated polycrystalline ceramics , 2007 .

[22]  J. G. Solé,et al.  Phase transition in SrxBa1−xNb2O6 ferroelectric crystals probed by Raman spectroscopy , 2006 .

[23]  Liyu Li,et al.  Two‐Step Sintering of Ceramics with Constant Grain‐Size, II: BaTiO3 and Ni–Cu–Zn Ferrite , 2006 .

[24]  S. Kapphan,et al.  Infrared and dielectric spectroscopy of the relaxor ferroelectric Sr0.61Ba0.39Nb2O6 , 2005 .

[25]  M. Göbbels,et al.  Phase relations and lattice parameters in the system SrO-BaO-Nb2O5 focusing on SBN (SrxBa1-xNb2O6) , 2004 .

[26]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[27]  R. Pirc,et al.  SPHERICAL RANDOM-BOND-RANDOM-FIELD MODEL OF RELAXOR FERROELECTRICS , 1999 .

[28]  D. J. Barber,et al.  Extrinsic contributions to the grain size dependence of relaxor ferroelectric Pb(Mg_1/3Nb_2/3)O_3: PbTiO_3 ceramics , 1993 .

[29]  Cross,et al.  Deviation from Curie-Weiss behavior in relaxor ferroelectrics. , 1992, Physical review. B, Condensed matter.

[30]  T. Shrout,et al.  Particle and grain size effects on the dielectric behavior of the relaxor ferroelectric Pb(Mg_1/3Nb_2/3)O_3 , 1990 .

[31]  G. Arlt Twinning in ferroelectric and ferroelastic ceramics: stress relief , 1990 .

[32]  Cross,et al.  Measurements of strain and the optical indices in the ferroelectric Ba0.4Sr0.6Nb2O6: Polarization effects. , 1987, Physical review. B, Condensed matter.

[33]  G. Arlt,et al.  Dielectric properties of fine‐grained barium titanate ceramics , 1985 .

[34]  G. Burns,et al.  Crystalline ferroelectrics with glassy polarization behavior , 1983 .

[35]  K. Uchino,et al.  Critical exponents of the dielectric constants in diffused-phase-transition crystals , 1982 .

[36]  Yasutoshi Kashiwada,et al.  The congruent melting composition of strontium barium niobate , 1976 .

[37]  J. Carruthers,et al.  Phase Equilibria Relations in the Ternary System BaO ‐ SrO ‐ Nb2 O 5 , 1970 .

[38]  A. M. Glass,et al.  Investigation of the Electrical Properties of Sr1−xBaxNb2O6 with Special Reference to Pyroelectric Detection , 1969 .

[39]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[40]  S. Abrahams,et al.  Ferroelectric Tungsten Bronze‐Type Crystal Structures. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78 , 1968 .

[41]  H. F. Kay,et al.  XCV. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties , 1949 .