Evaluation of NC-FinFET Based Subsystem-Level Logic Circuits

This paper examines metal–ferroelectric–insulator–semiconductor negative-capacitance FinFET (NC-FinFET) based VLSI subsystem-level logic circuits. For the first time, with the aid of a short-channel NC-FinFET compact model, we confirm the functionality and evaluate the standby-power/switching-energy/delay performance of large logic circuits (e.g., dynamic 4-bit Manchester carry-chain adder and the formal hierarchical 32-bit carry-look-ahead adder) employing 14-nm ultra-low-power NC-FinFETs. Our study indicates that the inverse <italic>V</italic><sub>ds</sub>-dependence of threshold voltage (<italic>V</italic><sub>T</sub>), also known as the negative drain-induced barrier lowering, of negative-capacitance field-effect transistor is not only acceptable but also beneficial for the speed performance of both the static and pass-transistor logic (PTL) circuits, especially for the PTL at low <italic>V</italic><sub>DD</sub>.

[1]  Maryam Shojaei Baghini,et al.  Circuit Optimization at 22nm Technology Node , 2012, 2012 25th International Conference on VLSI Design.

[2]  Wonil Chung,et al.  Alleviation of Short Channel Effects in Ge Negative Capacitance pFinFETs , 2018, 2018 76th Device Research Conference (DRC).

[3]  J. Lee,et al.  A 14 nm SoC platform technology featuring 2nd generation Tri-Gate transistors, 70 nm gate pitch, 52 nm metal pitch, and 0.0499 um2 SRAM cells, optimized for low power, high performance and high density SoC products , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[4]  S. Slesazeck,et al.  Demonstration of High-speed Hysteresis-free Negative Capacitance in Ferroelectric Hf0.5Zr0.5O2 , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[5]  Pin Su,et al.  Short-Channel Effects in 2D Negative-Capacitance Field-Effect Transistors , 2018, IEEE Transactions on Electron Devices.

[6]  Yogesh Singh Chauhan,et al.  Designing energy efficient and hysteresis free negative capacitance FinFET with negative DIBL and 3.5X ION using compact modeling approach , 2016, 2016 46th European Solid-State Device Research Conference (ESSDERC).

[7]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[8]  Hong Zhou,et al.  Negative Capacitance, n-Channel, Si FinFETs: Bi-directional Sub-60 mV/dec, Negative DIBL, Negative Differential Resistance and Improved Short Channel Effect , 2018, 2018 IEEE Symposium on VLSI Technology.

[9]  R. Sporer,et al.  14nm Ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[10]  Chenming Hu,et al.  Sub-60mV-swing negative-capacitance FinFET without hysteresis , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[11]  Chenming Hu,et al.  Impact of Parasitic Capacitance and Ferroelectric Parameters on Negative Capacitance FinFET Characteristics , 2017, IEEE Electron Device Letters.

[12]  Chenming Hu,et al.  Evaluation of NC-FinFET Based Subsystem-Level Logic Circuits Using SPICE Simulation , 2018, 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).

[13]  Masaharu Kobayashi,et al.  Device design guideline for steep slope ferroelectric FET using negative capacitance in sub-0.2V operation: Operation speed, material requirement and energy efficiency , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[14]  Zoran Krivokapic,et al.  Response Speed of Negative Capacitance FinFETs , 2018, 2018 IEEE Symposium on VLSI Technology.

[15]  Chenming Hu,et al.  Engineering Negative Differential Resistance in NCFETs for Analog Applications , 2018, IEEE Transactions on Electron Devices.

[16]  C. Hu,et al.  Circuit performance analysis of negative capacitance FinFETs , 2016, 2016 IEEE Symposium on VLSI Technology.

[17]  A. Ionescu,et al.  Demonstration of subthrehold swing smaller than 60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack , 2008, 2008 IEEE International Electron Devices Meeting.

[18]  Lan Wei,et al.  Effective Drive Current for Pass-Gate Transistors , 2016, IEEE Transactions on Electron Devices.

[19]  Ajay Naini,et al.  A 4.5 Ins 96b Cmos Adder Design , 1992, 1992 Proceedings of the IEEE Custom Integrated Circuits Conference.

[20]  M. B. I. Reaz,et al.  Performance evaluation of Manchester carry chain adder for VLSI designer library , 2005 .

[21]  Pin Su,et al.  Device Structural Effects on Negative-Capacitance FETs , 2018, 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).

[22]  Pin Su,et al.  Intrinsic Difference Between 2-D Negative-Capacitance FETs With Semiconductor-on-Insulator and Double-Gate Structures , 2018, IEEE Transactions on Electron Devices.

[23]  David Harris,et al.  CMOS VLSI Design: A Circuits and Systems Perspective , 2004 .

[24]  C. P. Tsai New Findings on the Gate-Length Dependence of Subthreshold Swing for Ultra-Thin-Body Negative Capacitance FETs , 2016 .

[25]  Akira Toriumi,et al.  Fully coupled 3-D device simulation of negative capacitance FinFETs for sub 10 nm integration , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[26]  Chenming Hu,et al.  Compact models of negative-capacitance FinFETs: Lumped and distributed charge models , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[27]  M. H. Lee,et al.  Prospects for ferroelectric HfZrOx FETs with experimentally CET=0.98nm, SSfor=42mV/dec, SSrev=28mV/dec, switch-off <0.2V, and hysteresis-free strategies , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).