Thalamocortical model for a propofol-induced α-rhythm associated with loss of consciousness

Recent data reveal that the general anesthetic propofol gives rise to a frontal α-rhythm at dose levels sufficient to induce loss of consciousness. In this work, a computational model is developed that suggests the network mechanisms responsible for such a rhythm. It is shown that propofol can alter the dynamics in thalamocortical loops, leading to persistent and synchronous α-activity. The synchrony that forms in the cortex by virtue of the involvement of the thalamus may impede responsiveness to external stimuli, thus providing a correlate for the unconscious state.

[1]  F. D. da Silva,et al.  Organization of thalamic and cortical alpha rhythms: spectra and coherences. , 1973, Electroencephalography and clinical neurophysiology.

[2]  F W Sharbrough,et al.  Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency. , 1977, Anesthesiology.

[3]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[4]  P. Goldman-Rakic,et al.  The primate mediodorsal (MD) nucleus and its projection to the frontal lobe , 1985, The Journal of comparative neurology.

[5]  T. Sejnowski,et al.  A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. , 1993, Biophysical journal.

[6]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[7]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  T. Sejnowski,et al.  Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. , 1996, Journal of neurophysiology.

[11]  B. Orser,et al.  The General Anesthetic Propofol Slows Deactivation and Desensitization of GABAA Receptors , 1999, The Journal of Neuroscience.

[12]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[13]  J. H. Fallon,et al.  Toward a Unified Theory of Narcosis: Brain Imaging Evidence for a Thalamocortical Switch as the Neurophysiologic Basis of Anesthetic-Induced Unconsciousness , 2000, Consciousness and Cognition.

[14]  O. Andreassen,et al.  Mice Deficient in Cellular Glutathione Peroxidase Show Increased Vulnerability to Malonate, 3-Nitropropionic Acid, and 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine , 2000, The Journal of Neuroscience.

[15]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[16]  M. Avoli,et al.  Spindle-like thalamocortical synchronization in a rat brain slice preparation. , 2000, Journal of neurophysiology.

[17]  E. John,et al.  Invariant Reversible QEEG Effects of Anesthetics , 2001, Consciousness and Cognition.

[18]  T. Sejnowski,et al.  Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations , 2001 .

[19]  Mark S. Cohen,et al.  Simultaneous EEG and fMRI of the alpha rhythm , 2002, Neuroreport.

[20]  Nancy Kopell,et al.  Synchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity , 2003, Neural Computation.

[21]  J. Shaw,et al.  The brain's alpha rhythms and the mind : a review of classical and modern studies of the alpha rhythm component of the electroencephalogram with commentaries on associated neuroscience and neuropsychology , 2003 .

[22]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. , 2003, Journal of neurophysiology.

[23]  H. Kuypers,et al.  Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey , 1977, Experimental Brain Research.

[24]  Andrew A Fingelkurts,et al.  The Brain's Alpha Rhythms and the Mind John Crosley Shaw; Elsevier Science B.V. 337 pages, ISBN: 0-444-51397-3 , 2004, Clinical Neurophysiology.

[25]  Nancy Kopell,et al.  Alpha-Frequency Rhythms Desynchronize over Long Cortical Distances: A Modeling Study , 2000, Journal of Computational Neuroscience.

[26]  V. Feshchenko,et al.  Propofol-Induced Alpha Rhythm , 2004, Neuropsychobiology.

[27]  S. Hughes,et al.  Thalamic Mechanisms of EEG Alpha Rhythms and Their Pathological Implications , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[28]  B. Connors,et al.  Functional Properties of Electrical Synapses between Inhibitory Interneurons of Neocortical Layer 4 , 2022 .

[29]  S. Epstein,et al.  Background gamma rhythmicity and attention in cortical local circuits: a computational study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Dmitri D. Pervouchine,et al.  Neuronal metabolism governs cortical network response state. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  O. Bertrand,et al.  Relationship between task‐related gamma oscillations and BOLD signal: New insights from combined fMRI and intracranial EEG , 2007, Human brain mapping.

[32]  Emery N Brown,et al.  Potential Network Mechanisms Mediating Electroencephalographic Beta Rhythm Changes during Propofol-Induced Paradoxical Excitation , 2008, The Journal of Neuroscience.

[33]  G. Tononi,et al.  Consciousness and Anesthesia , 2008, Science.

[34]  Dominique L. Pritchett,et al.  Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. , 2009, Journal of neurophysiology.

[35]  Casie L. Tavares,et al.  Developing new neurophysiological signatures of general anesthesia induced loss of consciousness , 2009, BMC Neuroscience.

[36]  Partha P. Mitra,et al.  Chronux: A platform for analyzing neural signals , 2010, Journal of Neuroscience Methods.

[37]  V. Galhardo,et al.  Comparison of Anesthetic Depth Indexes Based on Thalamocortical Local Field Potentials in Rats , 2010, Anesthesiology.

[38]  Dominique L. Pritchett,et al.  Cued Spatial Attention Drives Functionally Relevant Modulation of the Mu Rhythm in Primary Somatosensory Cortex , 2010, The Journal of Neuroscience.

[39]  Christopher I. Moore,et al.  Human Neuroscience , 2022 .