Ground simulation of wide frequency band angular vibration for Lander's optic sensors
暂无分享,去创建一个
To guide a lander of Moon or Mars exploration spacecraft during the stage of descent onto a desired place, optic sensors have been chosen to take the task, which include optic cameras and laser distance meters. However, such optic sensors are sensitive to vibrations, especially angular vibrations, from the lander. To reduce the risk of abnormal function and ensure the performance of optic sensors, ground simulations are necessary. More importantly, the simulations can be used as a method for examining the sensor performance and finding possible improvement on the sensor design. In the present paper, we proposed an angular vibration simulation method during the landing. This simulation method has been realized into product and applied to optic sensor tests for the moon lander. This simulator can generate random angular vibration in a frequency range from 0 to 2000Hz, the control precision is ±1dB, and the linear translational speed can be set to the required descent speed. The operation and data processing methods of this developed simulator are the same as a normal shake table. The analysis and design methods are studied in the present paper, and test results are also provided.
[1] J. W. Humberston. Classical mechanics , 1980, Nature.
[2] Eglin Afb,et al. The Advanced Guided Weapon Testbed (AGWT) at the Air Force Research Laboratory Munitions Directorate , 2009 .