Restoring bone marrow niche function rejuvenates aged hematopoietic stem cells by reactivating the DNA Damage Response

[1]  Michael G. Poulos,et al.  Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging , 2021, Current Stem Cell Reports.

[2]  G. Abel,et al.  Advances in Management for Older Adults With Hematologic Malignancies. , 2021, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  E. Passegué,et al.  Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions , 2021, The Journal of experimental medicine.

[4]  S. Haas,et al.  Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. , 2021, Cell stem cell.

[5]  J. Hoeijmakers,et al.  The central role of DNA damage in the ageing process , 2021, Nature.

[6]  É. Remy,et al.  Single-cell RNA-seq reveals a concomitant delay in differentiation and cell cycle of aged hematopoietic stem cells , 2021, BMC biology.

[7]  P. Robbins,et al.  DNA damage—how and why we age? , 2021, eLife.

[8]  A. Trumpp,et al.  Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1 , 2021, Nature Communications.

[9]  T. Enver,et al.  Mitochondrial Potentiation Ameliorates Age-Related Heterogeneity in Hematopoietic Stem Cell Function. , 2020, Cell stem cell.

[10]  C. Nerlov,et al.  Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing , 2020, Nature Communications.

[11]  L. Bystrykh,et al.  A comprehensive transcriptome signature of murine hematopoietic stem cell aging , 2020, bioRxiv.

[12]  T. Wyss-Coray,et al.  Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1 , 2020, Nature Metabolism.

[13]  Michael G. Poulos,et al.  Endothelial mTOR maintains hematopoiesis during aging , 2020, bioRxiv.

[14]  Michael G. Poulos,et al.  Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF , 2020, Nature Communications.

[15]  S. Méndez-Ferrer,et al.  Microenvironmental contributions to hematopoietic stem cell aging , 2019, Haematologica.

[16]  I. Weissman,et al.  Neogenin-1 distinguishes between myeloid-biased and balanced Hoxb5+ mouse long-term hematopoietic stem cells , 2019, Proceedings of the National Academy of Sciences.

[17]  Patrick M. Helbling,et al.  Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging and inflammation , 2019, bioRxiv.

[18]  Adam C. Wilkinson,et al.  Long-term ex vivo hematopoietic stem cell expansion affords nonconditioned transplantation , 2019, Nature.

[19]  Mark Ziemann,et al.  Digital expression explorer 2: a repository of uniformly processed RNA sequencing data , 2019, GigaScience.

[20]  Danica Chen,et al.  Mitochondrial Stress-Initiated Aberrant Activation of the NLRP3 Inflammasome Regulates the Functional Deterioration of Hematopoietic Stem Cell Aging , 2019, Cell reports.

[21]  Eun Woo Son,et al.  iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data , 2018, BMC Bioinformatics.

[22]  S. Gupton,et al.  Revisiting Netrin-1: One Who Guides (Axons) , 2018, Front. Cell. Neurosci..

[23]  P. Robbins,et al.  Nuclear Genomic Instability and Aging. , 2018, Annual review of biochemistry.

[24]  P. Frenette,et al.  Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche , 2018, Nature Medicine.

[25]  E. Fuchs,et al.  Stem cells: Aging and transcriptional fingerprints , 2018, The Journal of cell biology.

[26]  Michael G. Poulos,et al.  Endothelial transplantation rejuvenates aged hematopoietic stem cell function , 2017, The Journal of clinical investigation.

[27]  Mikaël M. Martino,et al.  Netrins as prophylactic targets in skeletal diseases: A double-edged sword? , 2017, Pharmacological Research.

[28]  S. Morrison,et al.  Adult haematopoietic stem cell niches , 2017, Nature Reviews Immunology.

[29]  A. Artz,et al.  Aging: Treating the Older Patient. , 2017, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[30]  Kateri Moore,et al.  Hematopoietic Stem Cells Count and Remember Self-Renewal Divisions , 2016, Cell.

[31]  N. Sharpless,et al.  Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice , 2015, Nature Medicine.

[32]  O. Elemento,et al.  Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerative Hematopoiesis , 2015, Stem cell reports.

[33]  A. Kania,et al.  Complete Loss of Netrin-1 Results in Embryonic Lethality and Severe Axon Guidance Defects without Increased Neural Cell Death. , 2015, Cell reports.

[34]  Danica Chen,et al.  A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging , 2015, Science.

[35]  R. Brekken,et al.  Hypoxia Studies with Pimonidazole in vivo. , 2014, Bio-protocol.

[36]  S. Morrison,et al.  Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. , 2014, Cell stem cell.

[37]  H. Okano,et al.  Leptin receptor makes its mark on MSCs. , 2014, Cell stem cell.

[38]  A. Wagers,et al.  Stem cell aging: mechanisms, regulators and therapeutic opportunities , 2014, Nature Medicine.

[39]  M. L. Beau,et al.  Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells , 2014, Nature.

[40]  I. Weissman,et al.  Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. , 2014, Cell stem cell.

[41]  Shuifang Zhu,et al.  Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads , 2014, BMC Bioinformatics.

[42]  B. Göttgens,et al.  Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. , 2014, Cell stem cell.

[43]  Anton J. Enright,et al.  Kraken: A set of tools for quality control and analysis of high-throughput sequence data , 2013, Methods.

[44]  M. Gunzer,et al.  Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. , 2012, Cell stem cell.

[45]  Lei Ding,et al.  Endothelial and perivascular cells maintain haematopoietic stem cells , 2011, Nature.

[46]  P. Mehlen,et al.  Netrin-1 role in angiogenesis: To be or not to be a pro-angiogenic factor? , 2010, Cell cycle.

[47]  J. Hoeijmakers DNA damage, aging, and cancer. , 2009, The New England journal of medicine.

[48]  Yang Liu,et al.  mTOR Regulation and Therapeutic Rejuvenation of Aging Hematopoietic Stem Cells , 2009, Science Signaling.

[49]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[50]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[51]  G. Smyth,et al.  ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. , 2009, Journal of immunological methods.

[52]  Marcus Fruttiger,et al.  The Notch Ligands Dll4 and Jagged1 Have Opposing Effects on Angiogenesis , 2009, Cell.

[53]  N. Binh,et al.  Genotoxic Stress Abrogates Renewal of Melanocyte Stem Cells by Triggering Their Differentiation , 2009, Cell.

[54]  R. Adams,et al.  DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. , 2009, Blood.

[55]  Zev Rosenwaks,et al.  Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. , 2009, Cell stem cell.

[56]  Chad A Shaw,et al.  Aging Hematopoietic Stem Cells Decline in Function and Exhibit Epigenetic Dysregulation , 2007, PLoS biology.

[57]  L. Balducci Myelosuppression and its consequences in elderly patients with cancer. , 2003, Oncology.

[58]  T. Volkert,et al.  E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. , 2002, Genes & development.

[59]  E. Hanson,et al.  A method for the quantitative analysis of stimulation-induced nuclear translocation of the p65 subunit of NF-κB from patient-derived dermal fibroblasts. , 2015, Methods in molecular biology.

[60]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..