Model-driven parameterization of the cortical surface for localization and inter-subject matching

In this paper we present a generic and organized model of cortical folding, and a way to implement this model on any given cortical surface. This results in a model-driven parameterization, providing an anatomically meaningful coordinate system for cortical localization, and implicitly defining inter-subject surface matching without any deformation of surfaces. We present our cortical folding model and show how it naturally defines a parameterization of the cortex. The mapping of the model to any given cortical surface is detailed, leading to an anatomically invariant coordinate system. The process is evaluated on real data in terms of both anatomical and functional localization, and shows improved performance compared to a traditional volume-based normalization. It is fully automatic and available with the BrainVISA software platform.

[1]  D. V. Essen,et al.  Analysis and comparison of areal partitioning schemes using two-dimensional fluid deformations , 1996, NeuroImage.

[2]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[3]  Tyrone D. Cannon,et al.  Genetic influences on brain structure , 2001, Nature Neuroscience.

[4]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[5]  P. Roland,et al.  Comparison of spatial normalization procedures and their impact on functional maps , 2002, Human brain mapping.

[6]  D. Louis Collins,et al.  Automated extraction and variability analysis of sulcal neuroanatomy , 1999, IEEE Transactions on Medical Imaging.

[7]  Edgar M. Housepian Atlas d'anatomie stereotaxique du telencephale. , 1968 .

[8]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[9]  J. Régis Anatomie sulcale profonde et cartographie fonctionnelle du cortex cerebral , 1994 .

[10]  D. Louis Collins,et al.  Retrospective evaluation of intersubject brain registration , 2003, IEEE Transactions on Medical Imaging.

[11]  D. V. von Cramon,et al.  Deep sulcal landmarks provide an organizing framework for human cortical folding. , 2008, Cerebral cortex.

[12]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[13]  P. Broca,et al.  Anatomie comparée des circonvolutions cérébrales : le grand lobe limbique et la scissure limbique dans la série des mammifères , 1878 .

[14]  B. Thirion,et al.  Fast reproducible identification and large-scale databasing of individual functional cognitive networks , 2007, BMC Neuroscience.

[15]  Pierre Fillard,et al.  Riemannian processing of tensors for diffusion MRI and computational anatomy of the brain. (Traitement riemannien des tenseurs pour l'IRM de diffusion et l'anatomie algorithmique du cerveau) , 2008 .

[16]  T. Paus,et al.  Functional coactivation map of the human brain. , 2008, Cerebral cortex.

[17]  E. Duchesnay,et al.  A framework to study the cortical folding patterns , 2004, NeuroImage.

[18]  C. Davatzikos Spatial normalization of 3D brain images using deformable models. , 1996, Journal of computer assisted tomography.

[19]  Isabelle Bloch,et al.  A generic framework for the parcellation of the cortical surface into gyri using geodesic Voronoı̈ diagrams , 2003, Medical Image Anal..

[20]  Y. Samson,et al.  "Sulcal root" generic model: a hypothesis to overcome the variability of the human cortex folding patterns. , 2005, Neurologia medico-chirurgica.

[21]  D. J. Cunningham,et al.  Contribution to the surface anatomy of the cerebral hemispheres . with A chapter upon cranio-cerebral topography , 1892 .

[22]  Marina Chicurel,et al.  Databasing the brain , 2000, Nature.

[23]  Tomokatsu Hori,et al.  Angiography of the Human Brain Cortex , 1977, Springer Berlin Heidelberg.

[24]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[25]  R. Kötter,et al.  Neuroscience databases: tools for exploring brain structure-function relationships. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  Gabriele Lohmann,et al.  Automatic labelling of the human cortical surface using sulcal basins , 2000, Medical Image Anal..

[27]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Louis Collins,et al.  Retrospective Evaluation of Inter-subject Brain Registration , 2001, MICCAI.

[29]  P. Todd A geometric model for the cortical folding pattern of simple folded brains. , 1982, Journal of theoretical biology.

[30]  Hans Elias,et al.  Cerebro-Cortical Surface Areas, Volumes, Lengths of Gyri and their Interdependence in Mammals, Including Man , 1970 .

[31]  J. Régis,et al.  Generic model for the localization of the cerebral cortex and preoperative multimodal integration in epilepsy surgery. , 1995, Stereotactic and functional neurosurgery.

[32]  Jerry L. Prince,et al.  Mapping Techniques for Aligning Sulci across Multiple Brains , 2003, MICCAI.

[33]  W. Welker Why Does Cerebral Cortex Fissure and Fold , 1990 .

[34]  O A TURNER Growth and development of the cerebral cortical pattern in man. , 1948, Archives of neurology and psychiatry.

[35]  Nicholas Ayache,et al.  Non-parametric Diffeomorphic Image Registration with the Demons Algorithm , 2007, MICCAI.

[37]  M. Mesulam Principles of Behavioral and Cognitive Neurology , 2000 .

[38]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[39]  Nicholas Ayache,et al.  Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration , 2010, IEEE Transactions on Medical Imaging.

[40]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[41]  K Zilles,et al.  Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  Roberto Toro,et al.  Geometric atlas: modeling the cortex as an organized surface , 2003, NeuroImage.

[43]  Karl J. Friston,et al.  High-Dimensional Image Registration Using Symmetric Priors , 1999, NeuroImage.

[44]  D. Pandya,et al.  Architecture and Connections of Cortical Association Areas , 1985 .

[45]  Nicholas Ayache,et al.  Understanding the "Demon's Algorithm": 3D Non-rigid Registration by Gradient Descent , 1999, MICCAI.

[46]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[47]  A. Toga,et al.  Mapping brain asymmetry , 2003, Nature Reviews Neuroscience.

[48]  N. Makris,et al.  Gyri of the human neocortex: an MRI-based analysis of volume and variance. , 1998, Cerebral cortex.

[49]  A. M. Dale,et al.  A Coordinate System for the Cortical Surface , 1998, NeuroImage.

[50]  Richard M. Leahy,et al.  Optimization method for creating semi-isometric flat maps of the cerebral cortex , 2000, Medical Imaging: Image Processing.

[51]  Richard M. Leahy,et al.  Comparison of landmark-based and automatic methods for cortical surface registration , 2010, NeuroImage.

[52]  D. Louis Collins,et al.  Non-linear Cerebral Registration with Sulcal Constraints , 1998, MICCAI.

[53]  C N WOOLSEY COMPARATIVE STUDIES ON LOCALIZATION IN PRECENTRAL AND SUPPLEMENTARY MOTOR AREAS. , 1963, International journal of neurology.

[54]  Moo K. Chung,et al.  Diffusion smoothing on brain surface via finite element method , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[55]  Prof. Dr. Heiko Braak,et al.  Architectonics of the Human Telencephalic Cortex , 1980, Studies of Brain Function.

[56]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[57]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[58]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[60]  Russell A. Poldrack,et al.  In praise of tedious anatomy , 2007, NeuroImage.

[61]  J Ashburner,et al.  The role of registration and spatial normalisation in detecting activations in functional imaging , 1997 .

[62]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[63]  A. Dale,et al.  A surface-based coordinate system for a canonical cortex , 1996, NeuroImage.

[64]  Guido Gerig,et al.  Parametrization of Closed Surfaces for 3-D Shape Description , 1995, Comput. Vis. Image Underst..

[65]  Karl J. Friston,et al.  High-Dimensional Nonlinear Image Registration , 1998, NeuroImage.

[66]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[67]  Grégory Operto,et al.  Surface-Based Structural Group Analysis of fMRI Data , 2008, MICCAI.

[68]  Jean-Francois Mangin,et al.  A New Cortical Surface Parcellation Model and Its Automatic Implementation , 2006, MICCAI.

[69]  Jean-Francois Mangin,et al.  Automatic recognition of cortical sulci of the human brain using a congregation of neural networks , 2002, Medical Image Anal..

[70]  David B. Arciniegas Principles of Behavioral and Cognitive Neurology, Second Edition , 2001 .

[71]  Gary E. Christensen,et al.  Consistent Linear-Elastic Transformations for Image Matching , 1999, IPMI.

[72]  Woolsey Cn,et al.  COMPARATIVE STUDIES ON LOCALIZATION IN PRECENTRAL AND SUPPLEMENTARY MOTOR AREAS. , 1963 .

[73]  Lok Ming Lui,et al.  Brain Surface Conformal Parameterization Using Riemann Surface Structure , 2007, IEEE Transactions on Medical Imaging.

[74]  Pasko Rakic,et al.  Intrinsic and Extrinsic Determinants of Neocortical Parcellation: A Radial Unit Model , 2008 .