Data-Based Iterative Dynamic Decoupling Control for Precision MIMO Motion Systems

Decoupling control is still an important research topic for precision multiple-input–multiple-output (MIMO) motion systems involved in computer numerically controlled (CNC) machine tools, wafer scanners, etc. In this paper, to minimize internal coupling and improve servo performance, a data-based iterative dynamic decoupling control (IDDC) approach is synthesized. Specifically, a MIMO dynamic decoupling controller structured with finite impulse response filter is used as an add-on to a static decoupling part. Then, a data-based parameter optimization algorithm is developed such that the optimal parameters can be iteratively solved based entirely on the input/output data by minimizing the coupling-induced error. Unlike pre-existing IDDC approaches, the proposed approach can achieve an unbiased estimate of the optimal parameters combined with a small estimate variance that is illustrated through numerical simulation. Finally, application to an ultraprecision wafer stage confirms that the proposed approach significantly decreases the coupling-induced error and achieves enhanced performance compared to pre-existing approaches.

[1]  Seiichiro Katsura,et al.  Interpolation of a Clothoid Curve Based on Iterative True-Value Prediction Considering the Discretization Error , 2018, IEEE Transactions on Industrial Informatics.

[2]  Chuanhou Gao,et al.  Guest Editorial: Special section on data-driven approaches for complex industrial systems , 2013, IEEE Trans. Ind. Informatics.

[3]  Min Li,et al.  An Integrated Model-Data-Based Zero-Phase Error Tracking Feedforward Control Strategy With Application to an Ultraprecision Wafer Stage , 2017, IEEE Transactions on Industrial Electronics.

[4]  M Maarten Steinbuch,et al.  Non-diagonal H∞ weighting function design: Exploiting spatio-temporal deformations in precision motion control , 2015 .

[5]  Cheng Li,et al.  Dynamic decoupling and compensating methods of multi-axis force sensors , 2000, IEEE Trans. Instrum. Meas..

[6]  Håkan Hjalmarsson,et al.  Iterative feedback tuning—an overview , 2002 .

[7]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[8]  Seiichiro Katsura,et al.  Decoupling and Performance Enhancement of Hybrid Control for Motion-Copying System , 2017, IEEE Transactions on Industrial Electronics.

[9]  Marc M. J. van de Wal,et al.  Connecting System Identification and Robust Control for Next-Generation Motion Control of a Wafer Stage , 2014, IEEE Transactions on Control Systems Technology.

[10]  Michel Gevers,et al.  Correlation-based tuning of decoupling multivariable controllers , 2007, Autom..

[11]  Weihai Chen,et al.  Robust dynamic decoupling control for permanent magnet spherical actuators based on extended state observer , 2017 .

[12]  Lei Zhang,et al.  Dual-Stage Nanopositioning Scheme for 10 Tbit/in $^{\mathrm {{2}}}$ Hard Disk Drives With a Shear-Mode Piezoelectric Single-Crystal Microactuator , 2015, IEEE Transactions on Magnetics.

[13]  Tianyou Chai,et al.  Multiple models and neural networks based decoupling control of ball mill coal-pulverizing systems , 2011 .

[14]  A. Karimi,et al.  Iterative correlation‐based controller tuning , 2004 .

[15]  Mf Marcel Heertjes,et al.  Minimizing cross-talk in high-precision motion systems using data-based dynamic decoupling , 2011 .

[16]  Han Ding,et al.  Integral design of contour error model and control for biaxial system , 2015 .

[17]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[18]  Haitao Li,et al.  Composite Decoupling Control of Gimbal Servo System in Double-Gimbaled Variable Speed CMG Via Disturbance Observer , 2017, IEEE/ASME Transactions on Mechatronics.

[19]  N. K. Poulsen,et al.  Improving Convergence of Iterative Feedback Tuning , 2009 .

[20]  Yonghong Tan,et al.  Nonlinear Modeling and Decoupling Control of XY Micropositioning Stages With Piezoelectric Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[21]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[22]  Yong D. Song,et al.  Guest Editorial [Special Issue: Data-driven Control, and Data-Based System Modelling, Monitoring, and Control] , 2016 .

[23]  Qingsong Ai,et al.  Robust Iterative Feedback Tuning Control of a Compliant Rehabilitation Robot for Repetitive Ankle Training , 2017, IEEE/ASME Transactions on Mechatronics.

[24]  Marcel François Heertjes,et al.  Constrained Iterative Feedback Tuning for Robust Control of a Wafer Stage System , 2016, IEEE Transactions on Control Systems Technology.

[25]  Hongliang Ren,et al.  Dynamic decoupling control of DGCMG gimbal system via state feedback linearization , 2016 .

[26]  Jinchuan Zheng,et al.  Feedforward decoupling control design for dual-actuator system in hard disk drives , 2004 .

[27]  Sergio M. Savaresi,et al.  Non-iterative direct data-driven controller tuning for multivariable systems: theory and application , 2012 .

[28]  Min Li,et al.  Convergence Rate Oriented Iterative Feedback Tuning With Application to an Ultraprecision Wafer Stage , 2019, IEEE Transactions on Industrial Electronics.

[29]  Alexander Lanzon,et al.  Enhanced Tracking for Nanopositioning Systems Using Feedforward/Feedback Multivariable Control Design , 2015, IEEE Transactions on Control Systems Technology.

[30]  Jian-Xin Xu,et al.  Data-Driven Iterative Feedforward Tuning for a Wafer Stage: A High-Order Approach Based on Instrumental Variables , 2019, IEEE Transactions on Industrial Electronics.

[31]  Danwei Wang,et al.  A Data-Driven Iterative Feedback Tuning Approach of ALINEA for Freeway Traffic Ramp Metering With PARAMICS Simulations , 2013, IEEE Transactions on Industrial Informatics.

[32]  Diego Eckhard,et al.  Data-Driven Controller Design: The H2 Approach , 2011 .

[33]  Javam C. Machado,et al.  A Fault Detection Method for Hard Disk Drives Based on Mixture of Gaussians and Nonparametric Statistics , 2017, IEEE Transactions on Industrial Informatics.

[34]  Huijun Gao,et al.  Data-Driven Control and Learning Systems , 2017, IEEE Trans. Ind. Electron..

[35]  P. Sas,et al.  Optimal decoupling for MIMO-controller design with robust performance , 2004, Proceedings of the 2004 American Control Conference.

[36]  Dan Zhao,et al.  An efficient error compensation method for coordinated CNC five-axis machine tools , 2017 .

[37]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..