A modified predictor-corrector scheme for the Klein–Gordon equation

A numerical method based on a three-time level finite-difference scheme has been proposed for the solution of the two forms of the Klein–Gordon equation. The method, which is analysed for local truncation error and stability, leads to the solution of a nonlinear system. To avoid solving it, a predictor-corrector scheme using as predictor a second-order explicit scheme is proposed. The procedure of the corrector is modified by considering, as known, the already evaluated corrected values instead of the predictor ones. This modified scheme is applied to problems possessing periodic, kinks and soliton waves. The accuracy as well as the long-time behaviour of the proposed scheme is discussed and comparisons with the relevant known in the bibliography schemes are given.

[1]  Abdul-Majid Wazwaz,et al.  Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations , 2006 .

[2]  A. G. Bratsos On the numerical solution of the Klein-Gordon equation , 2009 .

[3]  A. G. Bratsos The solution of the two-dimensional sine-Gordon equation using the method of lines , 2007 .

[4]  Athanassios G. Bratsos,et al.  A fourth order numerical scheme for the one-dimensional sine-Gordon equation , 2008, Int. J. Comput. Math..

[5]  G. Adomian,et al.  Non-perturbative solution of the Klein-Gordon-Zakharov equation , 1997 .

[6]  Salvador Jiménez,et al.  Derivation of the discrete conservation laws for a family of finite difference schemes , 1994 .

[7]  D. Korteweg,et al.  On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .

[8]  Athanassios G. Bratsos,et al.  A second order numerical scheme for the solution of the one-dimensional Boussinesq equation , 2007, Numerical Algorithms.

[9]  Andrei D. Polyanin,et al.  Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations , Chapman & Hall/CRC, Boca , 2004 .

[10]  L. Peliti,et al.  Approach to equilibrium in a chain of nonlinear oscillators , 1982 .

[11]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[12]  Juan I. Ramos,et al.  The sine-Gordon equation in the finite line , 2001, Appl. Math. Comput..

[13]  Athanassios G. Bratsos,et al.  A modified predictor–corrector scheme for the two-dimensional sine-Gordon equation , 2007, Numerical Algorithms.

[14]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[15]  Y. Tourigny,et al.  Product approximation for nonlinear Klein-Gordon equations , 1990 .

[16]  L. Vázquez,et al.  Analysis of Four Numerical Schemes for a Nonlinear Klein-Gordon Equation , 1990 .

[17]  Mark A. M. Lynch Large amplitude instability in finite difference approximations to the Klein-Gordon equation , 1999 .

[18]  MalflietW. The tanh method , 2004 .

[19]  W. Hereman,et al.  The tanh method: I. Exact solutions of nonlinear evolution and wave equations , 1996 .

[20]  Elçin Yusufoglu,et al.  The variational iteration method for studying the Klein-Gordon equation , 2008, Appl. Math. Lett..

[21]  Jalil Rashidinia,et al.  Numerical solution of the nonlinear Klein-Gordon equation , 2010, J. Comput. Appl. Math..

[22]  Comportamiento de ciertas cadenas de osciladores no lineales , 1988 .

[23]  A. Polyanin,et al.  Handbook of Nonlinear Partial Differential Equations , 2003 .

[24]  M. D. Collins A split‐step Padé solution for the parabolic equation method , 1993 .

[25]  A. G. Bratsos A numerical method for the one‐dimensional sine‐Gordon equation , 2008 .

[26]  M. A. Helal,et al.  Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics , 2002 .

[27]  L. Vázquez,et al.  A LEGENDRE SPECTRAL METHOD FOR SOLVING THE NONLINEAR KLEIN GORDON EQUATION , 1996 .

[28]  G. Lamb Elements of soliton theory , 1980 .

[29]  W. Strauss,et al.  Numerical solution of a nonlinear Klein-Gordon equation , 1978 .

[30]  Daisuke Furihata,et al.  Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .

[31]  Numerical computations of Liapunov exponents for a discretized one-dimensional nonlinear Klein-Gordon equation , 1983 .

[32]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[33]  D. Frantzeskakis,et al.  Solitary Wave Collisions , 2009 .

[34]  Yau Shu Wong,et al.  An initial-boundary value problem of a nonlinear Klein-Gordon equation , 1997 .

[35]  Elias Deeba,et al.  A Decomposition Method for Solving the Nonlinear Klein-Gordon Equation , 1996 .

[36]  Athanassios G. Bratsos,et al.  A third order numerical scheme for the two-dimensional sine-Gordon equation , 2007, Math. Comput. Simul..

[37]  Qin Sheng,et al.  A predictor‐‐corrector scheme for the sine‐Gordon equation , 2000 .

[38]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[39]  Chauncey D. Leake,et al.  British Association for the Advancement of Science , 1953, Science.