Second-Order Wave Loads on a LNG Carrier in Multi-Directional Waves

Due to the installation of LNG terminals moored in proximity to the coast, the wave kinematics in shallow water and the consequence on the behavior of those terminals have recently became a major concern of the offshore industry. One key issue is the accurate simulation of the low-frequency motions of LNG carriers, specially the surge, for which the vessel presents low damping, in order to perform the design of the mooring system. The present paper focuses on the effect of wave directionality on second-order slow-drift loads and the related response of the vessel. The paper describes results of model tests in regular cross waves — monochromatic but coming from two directions separated by 90 degrees, as well as bichromatic cross waves. The new “middle field” formulation extended to the case of cross waves, is used to compute the wave drift loads and low-frequency Quadratic Transfer Function (QTF). The results are compared with those from the model tests.Copyright © 2008 by ASME