Mechano‐Optical Characterization of Extrusion Flow Instabilities in Styrene‐Butadiene Rubbers: Investigating the Influence of Molecular Properties and Die Geometry

C. K. Georgantopoulos, Dr. M. K. Esfahani, C. Botha, Dr. I. F. C. Naue, Dr. N. Dingenouts, Prof. M. Wilhelm Karlsruhe Institute of Technology (KIT) Institute of Chemical Technology and Polymer Chemistry (ITCP) Engesserstraße 18, Karlsruhe 76131, Germany E-mail: manfred.wilhelm@kit.edu Dr. A. Causa Pirelli Tyre S. p. A., R&D Viale Piero e Alberto Pirelli 25 Milan 20126, Italy Prof. R. Kádár Department of Industrial and Materials Science Division of Engineering Materials Chalmers University of Technology Gothenburg SE-412 96, Sweden The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/mame.202000801.

[1]  J. Hale,et al.  Investigation of the Sharkskin melt instability using optical Fourier analysis , 2019, Journal of Applied Polymer Science.

[2]  M. Wilhelm,et al.  On-line SEC-MR-NMR hyphenation: optimization of sensitivity and selectivity on a 62 MHz benchtop NMR spectrometer , 2019, Polymer Chemistry.

[3]  J. Covas,et al.  Assessment of Piezoelectric Sensors for the Acquisition of Steady Melt Pressures in Polymer Extrusion , 2019, Fluids.

[4]  M. Wilhelm,et al.  Comb and Bottlebrush Polymers with Superior Rheological and Mechanical Properties , 2019, Advanced materials.

[5]  S. Hatzikiriakos,et al.  Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics , 2018 .

[6]  Shi‐Qing Wang Nonlinear Polymer Rheology: Macroscopic Phenomenology and Molecular Foundation , 2018 .

[7]  M. Wilhelm,et al.  First normal stress difference and in-situ spectral dynamics in a high sensitivity extrusion die for capillary rheometry via the ʽhole effect’ , 2016 .

[8]  M. Wilhelm,et al.  A New High Sensitivity System to Detect Instabilities During the Extrusion of Polymer Melts , 2015 .

[9]  Y. Inn Melt fracture and wall slip of metallocene-catalyzed bimodal polyethylenes in capillary flow , 2013 .

[10]  S. Hatzikiriakos,et al.  Melt Fracture of Two Broad Molecular Weight Distribution High-Density Polyethylenes , 2012 .

[11]  S. Hatzikiriakos Wall slip of molten polymers , 2012 .

[12]  C. Balan,et al.  Transient dynamics of the wavy regime in Taylor–Couette geometry , 2012 .

[13]  S. Hatzikiriakos,et al.  Rheology of Ziegler–Natta and metallocene high-density polyethylenes: broad molecular weight distribution effects , 2011 .

[14]  J. Molenaar,et al.  Polymer Melt Fracture , 2010 .

[15]  F. Hennrich,et al.  Characterization of melt flow instabilities in polyethylene/carbon nanotube composites , 2010 .

[16]  M. Wilhelm,et al.  Correlation between polyethylene topology and melt flow instabilities by determining in-situ pressure fluctuations and applying advanced data analysis , 2010 .

[17]  S. Muller,et al.  Spatio-temporal mode dynamics and higher order transitions in high aspect ratio Newtonian Taylor–Couette flows , 2009, Journal of Fluid Mechanics.

[18]  M. Wilhelm,et al.  In situ Pressure Fluctuations of Polymer Melt Flow Instabilities: Experimental Evidence about their Origin and Dynamics. , 2009, Macromolecular rapid communications.

[19]  G. Georgiou,et al.  Sharkskin and oscillating melt fracture: Why in slit and capillary dies and not in annular dies? , 2008 .

[20]  F. Stadler,et al.  Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows , 2007 .

[21]  J. Pinto Polymer Processing Instabilities - Control and Understanding , 2007 .

[22]  T. McLeish,et al.  Viscoelasticity of Monodisperse Comb Polymer Melts , 2006 .

[23]  F. Stadler,et al.  Rheological Characterization of Long‐chain Branched Polyethylenes and Comparison with Classical Analytical Methods , 2006 .

[24]  Morton M. Denn,et al.  EXTRUSION INSTABILITIES AND WALL SLIP , 2003 .

[25]  Walter Richtering,et al.  Understanding Rheology , 2002 .

[26]  Dagmar van Dusschoten,et al.  Increased torque transducer sensitivity via oversampling , 2001 .

[27]  M. Shaw,et al.  Efforts to find stick‐slip flow in the land of a die under sharkskin melt fracture conditions: polybutadiene , 2000 .

[28]  M. Shaw,et al.  Visual observation of development of sharkskin melt fracture in polybutadiene extrusion , 1998 .

[29]  Shi‐Qing Wang,et al.  INTERFACIAL MOLECULAR INSTABILITY MECHANISM FOR SHARKSKIN PHENOMENON IN CAPILLARY EXTRUSION OF LINEAR POLYETHYLENES , 1998 .

[30]  Shi‐Qing Wang,et al.  Exploring molecular origins of sharkskin, partial slip, and slope change in flow curves of linear low density polyethylene , 1996 .

[31]  A. Leonov Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids , 1994 .

[32]  S. Hatzikiriakos,et al.  Effects of Interfacial Conditions on Wall Slip and Sharkskin Melt Fracture of HDPE , 1993 .

[33]  P. Gennes,et al.  Shear-dependent slippage at a polymer/solid interface , 1992 .

[34]  Leonard A. Smith,et al.  Distinguishing between low-dimensional dynamics and randomness in measured time series , 1992 .

[35]  S. Hatzikiriakos,et al.  Role of slip and fracture in the oscillating flow of HDPE in a capillary , 1992 .

[36]  W. Graessley,et al.  Effects of polydispersity on linear viscoelasticity in entangled polymer melts , 1992 .

[37]  S. Hatzikiriakos,et al.  Wall slip of molten high density polyethylenes. II. Capillary rheometer studies , 1992 .

[38]  W. F. Busse Two decades of high‐polymer physics: A survey and forecast , 1964 .

[39]  M. Huggins Viscoelastic Properties of Polymers. , 1961 .

[40]  W. Cox,et al.  Correlation of dynamic and steady flow viscosities , 1958 .

[41]  M. Mooney Explicit Formulas for Slip and Fluidity , 1931 .