Multi-scale local shape analysis and feature selection in machine learning applications

We introduce a method called multi-scale local shape analysis for extracting features that describe the local structure of points within a dataset. The method uses both geometric and topological features at multiple levels of granularity to capture diverse types of local information for subsequent machine learning algorithms operating on the dataset. Using synthetic and real dataset examples, we demonstrate significant performance improvement of classification algorithms constructed for these datasets with correspondingly augmented features.

[1]  Sayan Mukherjee,et al.  Local homology transfer and stratification learning , 2012, SODA.

[2]  David Shallcross,et al.  Application of multi-scale singular vector decomposition to vessel classification in overhead satellite imagery , 2015, Digital Image Processing.

[3]  Tamal K. Dey,et al.  Dimension Detection with Local Homology , 2014, 1405.3534.

[4]  Sayan Mukherjee,et al.  Learning Subspaces of Different Dimension , 2014, 1404.6841.

[5]  Hervé Pajot,et al.  Analytic capacity, rectifiability, Menger curvature and the Cauchy integral , 2002 .

[6]  Dimitri Lague,et al.  3D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology , 2011, ArXiv.

[7]  Peter W. Jones Rectifiable sets and the Traveling Salesman Problem , 1990 .

[8]  Xavier Tolsa,et al.  ON THE ANALYTIC CAPACITY γ+ , 2003 .

[9]  Brittany Terese Fasy,et al.  Local persistent homology based distance between maps , 2014, SIGSPATIAL/GIS.

[10]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[11]  Hiroshi Motoda,et al.  Book Review: Computational Methods of Feature Selection , 2007, The IEEE intelligent informatics bulletin.

[12]  Adam Watkins,et al.  Topological and statistical behavior classifiers for tracking applications , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[14]  David Cohen-Steiner,et al.  Lipschitz Functions Have Lp-Stable Persistence , 2010, Found. Comput. Math..

[15]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[16]  Sing-Tze Bow,et al.  Pattern recognition and image preprocessing , 1992 .

[17]  Uri Stav,et al.  Non-Linear Index Coding Outperforming the Linear Optimum , 2007, FOCS.

[18]  Hiroshi Motoda,et al.  Computational Methods of Feature Selection , 2022 .

[19]  J. C. Leger Menger curvature and rectifiability , 1999 .

[20]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[21]  Kari Torkkola,et al.  Feature Extraction by Non-Parametric Mutual Information Maximization , 2003, J. Mach. Learn. Res..

[22]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[23]  David Shallcross,et al.  Centralized multi-scale singular value decomposition for feature construction in LIDAR image classification problems , 2012, 2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).

[24]  S. Semmes,et al.  Quantifying Curvelike Structures of Measures by Using L2 Jones Quantities , 2003 .

[25]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[26]  Takafumi Kanamori,et al.  Density Ratio Estimation in Machine Learning , 2012 .

[27]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[28]  M. Maggioni,et al.  Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels , 2008, Proceedings of the National Academy of Sciences.

[29]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[30]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[31]  Aaron B. Adcock,et al.  The Ring of Algebraic Functions on Persistence Bar Codes , 2013, 1304.0530.

[32]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[33]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[34]  David Cohen-Steiner,et al.  Inferring Local Homology from Sampled Stratified Spaces , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[35]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .