Cluster-based probability model and its application to image and texture processing

We develop, analyze, and apply a specific form of mixture modeling for density estimation within the context of image and texture processing. The technique captures much of the higher order, nonlinear statistical relationships present among vector elements by combining aspects of kernel estimation and cluster analysis. Experimental results are presented in the following applications: image restoration, image and texture compression, and texture classification.

[1]  Y. Chien,et al.  Pattern classification and scene analysis , 1974 .

[2]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[3]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[4]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[5]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[6]  Glen G. Langdon,et al.  Arithmetic Coding , 1979 .

[7]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[8]  Glen G. Langdon,et al.  Universal modeling and coding , 1981, IEEE Trans. Inf. Theory.

[9]  Jorma Rissanen,et al.  Compression of Black-White Images with Arithmetic Coding , 1981, IEEE Trans. Commun..

[10]  A. Cohen,et al.  Finite Mixture Distributions , 1982 .

[11]  David J. Hand,et al.  Kernel Discriminant Analysis , 1983 .

[12]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[13]  Glen G. Langdon,et al.  An Introduction to Arithmetic Coding , 1984, IBM J. Res. Dev..

[14]  L. Devroye A Course in Density Estimation , 1987 .

[15]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[16]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[17]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[18]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[19]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[20]  Allen Gersho,et al.  Optimal nonlinear interpolative vector quantization , 1990, IEEE Trans. Commun..

[21]  Ashok C. Popat,et al.  Scalar Quantization With Arithmetic Coding , 1990 .

[22]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[23]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[24]  Richard Lippmann,et al.  Neural Network Classifiers Estimate Bayesian a posteriori Probabilities , 1991, Neural Computation.

[25]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[26]  Glen G. Langdon,et al.  On the JPEG model for lossless image compression , 1992, Data Compression Conference, 1992..

[27]  Kris Popat,et al.  Novel cluster-based probability model for texture synthesis, classification, and compression , 1993, Other Conferences.

[28]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[29]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[30]  Kris Popat,et al.  Exaggerated consensus in lossless image compression , 1994, Proceedings of 1st International Conference on Image Processing.

[31]  P Pudil,et al.  Simultaneous learning of decision rules and important attributes for classification problems in image analysis , 1994, Image Vis. Comput..

[32]  J. Simonoff Multivariate Density Estimation , 1996 .

[33]  Robert M. Gray,et al.  Bayes risk weighted vector quantization with posterior estimation for image compression and classification , 1996, IEEE Trans. Image Process..

[34]  Savitri Bevinakoppa,et al.  DIGITAL IMAGE COMPRESSION TECHNIQUES , 2014 .

[35]  I. Omiaj,et al.  Extensions of a Theory of Networks for Approximation and Learning : dimensionality reduction and clustering , 2022 .