The type III needle and the damage done.

Many Gram-negative pathogens translocate virulence proteins directly into host cells using a type III secretion system. This complex secretion machinery is composed of approximately 25 different proteins that assemble to span both bacterial membranes, and contact the host cell to form a direct channel between the bacterial and host cell cytoplasms. Assembly of the system and efficient secretion of virulence proteins through this apparatus require specific chaperones. Although the machinery is morphologically conserved among all bacteria, the secreted proteins vary widely and are responsible for the range of diseases caused by bacterial pathogens. Recent structures have given insights into important chaperone and effector proteins, as well as revealing the first atomic structures of portions of the secretion machinery itself.

[1]  P. Sansonetti,et al.  Structure and composition of the Shigella flexneri‘needle complex’, a part of its type III secreton , 2001, Molecular microbiology.

[2]  C. Hill,et al.  Crystal Structure of the Flagellar Rotor Protein FliN from Thermotoga maritima , 2005, Journal of bacteriology.

[3]  Z. Derewenda,et al.  The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. , 2004, Structure.

[4]  T. Marlovits,et al.  Structural Insights into the Assembly of the Type III Secretion Needle Complex , 2004, Science.

[5]  J. Tropea,et al.  Electronic Reprint Biological Crystallography Three-dimensional Structure of the Type Iii Secretion Chaperone Syce from Yersinia Pestis Biological Crystallography Three-dimensional Structure of the Type Iii Secretion Chaperone Syce from Yersinia Pestis , 2022 .

[6]  Katsumi Imada,et al.  Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism , 2004, Nature.

[7]  Samuel I. Miller,et al.  Structural characterization of the molecular platform for type III secretion system assembly , 2005, Nature.

[8]  Takashi Kumasaka,et al.  Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling , 2001, Nature.

[9]  T. Burke,et al.  High-resolution structure of the Yersinia pestis protein tyrosine phosphatase YopH in complex with a phosphotyrosyl mimetic-containing hexapeptide. , 2003, Biochemistry.

[10]  G. Cornelis,et al.  Customized secretion chaperones in pathogenic bacteria , 1996, Molecular microbiology.

[11]  E. Zuiderweg,et al.  Structure of the type III secretion and substrate‐binding domain of Yersinia YopH phosphatase , 2001, Molecular microbiology.

[12]  J. Tropea,et al.  Crystal structure of the protease‐resistant core domain of Yersinia pestis virulence factor YopR , 2005, Protein science : a publication of the Protein Society.

[13]  M. W. Jackson,et al.  Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. , 2005, Journal of molecular biology.

[14]  R. Pfuetzner,et al.  Crystal structure of enteropathogenic Escherichia coli intimin–receptor complex , 2000, Nature.

[15]  E. Fauman,et al.  Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 Å and the complex with tungstate , 1994, Nature.

[16]  F. Cordes,et al.  Helical Structure of the Needle of the Type III Secretion System of Shigella flexneri * , 2003, The Journal of Biological Chemistry.

[17]  A. Fedorov,et al.  Crystal Structure of the Yersinia Protein-tyrosine Phosphatase YopH Complexed with a Specific Small Molecule Inhibitor* , 2003, Journal of Biological Chemistry.

[18]  S. Birtalan,et al.  Structure of the Yersinia type III secretory system chaperone SycE , 2001, Nature Structural Biology.

[19]  G. Frankel,et al.  Structural and functional studies of the enteropathogenic Escherichia coli type III needle complex protein EscJ , 2005, Molecular microbiology.

[20]  Jorge E. Galán,et al.  Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion , 2001, Nature.

[21]  B. Finlay,et al.  Structural characterization of a type III secretion system filament protein in complex with its chaperone , 2005, Nature Structural &Molecular Biology.

[22]  J. Heesemann,et al.  Crystal Structure of the Yersinia enterocolitica Type III Secretion Chaperone SycT* , 2005, Journal of Biological Chemistry.

[23]  Jeff H. Chang,et al.  Crystal structures of the type III effector protein AvrPphF and its chaperone reveal residues required for plant pathogenesis. , 2004, Structure.

[24]  G. Martin,et al.  The solution structure of type III effector protein AvrPto reveals conformational and dynamic features important for plant pathogenesis. , 2004, Structure.

[25]  Shin-Ichi Aizawa,et al.  Type III secretion systems and bacterial flagella: Insights into their function from structural similarities , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Mckay,et al.  Structure of the Yersinia enterocolitica molecular-chaperone protein SycE. , 2003, Acta crystallographica. Section D, Biological crystallography.

[27]  E. Neumann,et al.  The PscE-PscF-PscG Complex Controls Type III Secretion Needle Biogenesis in Pseudomonas aeruginosa* , 2005, Journal of Biological Chemistry.

[28]  J. Stuckey,et al.  Two substrate‐targeting sites in the Yersinia protein tyrosine phosphatase co‐operate to promote bacterial virulence , 2005, Molecular microbiology.

[29]  C. E. Stebbins,et al.  Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. , 2000, Molecular cell.

[30]  B. Finlay,et al.  CesT is a multi‐effector chaperone and recruitment factor required for the efficient type III secretion of both LEE‐ and non‐LEE‐encoded effectors of enteropathogenic Escherichia coli , 2005, Molecular microbiology.

[31]  C. Parsot,et al.  The various and varying roles of specific chaperones in type III secretion systems. , 2003, Current opinion in microbiology.

[32]  K. Namba,et al.  Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy , 2003, Nature.

[33]  solution structure, backbone dynamics, and interaction with Cdc42 of Salmonella guanine nucleotide exchange factor SopE2. , 2004, Biochemistry.

[34]  Hirofumi Suzuki,et al.  Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. , 2004, Journal of molecular biology.

[35]  D. E. Anderson,et al.  Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. , 2001, Journal of molecular biology.

[36]  E. Fauman,et al.  A ligand‐induced conformational change in the yersinia protein tyrosine phosphatase , 1995, Protein science : a publication of the Protein Society.

[37]  G. Cornelis,et al.  Individual chaperones required for Yop secretion by Yersinia. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[38]  E. Fauman,et al.  The X-ray Crystal Structures of Yersinia Tyrosine Phosphatase with Bound Tungstate and Nitrate , 1996, The Journal of Biological Chemistry.

[39]  G. Plano,et al.  Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion , 2005, Molecular microbiology.

[40]  A. Wittinghofer,et al.  How the Pseudomonas aeruginosa ExoS toxin downregulates Rac , 2001, Nature Structural Biology.

[41]  Markus R. Wenk,et al.  Structural and biochemical characterization of the type III secretion chaperones CesT and SigE , 2001, Nature Structural Biology.

[42]  J. Tropea,et al.  Structure of the Yersinia pestis type III secretion chaperone SycH in complex with a stable fragment of YscM2. , 2004, Acta crystallographica. Section D, Biological crystallography.

[43]  S. Phillips,et al.  Structure of HrcQB-C, a conserved component of the bacterial type III secretion systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. Morris,et al.  3D structure of EspA filaments from enteropathogenic Escherichia coli , 2003, Molecular microbiology.

[45]  Christopher M. Dobson,et al.  Structural characterization of a highly–ordered ‘molten globule’ at low pH , 1994, Nature Structural Biology.

[46]  D. Heinz,et al.  Crystal structure of Yersinia enterocolitica type III secretion chaperone SycT , 2005, Protein science : a publication of the Protein Society.

[47]  B. Dijkstra,et al.  Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity , 2004, EMBO reports.

[48]  F. Katagiri,et al.  Crystal structure of the type III effector AvrB from Pseudomonas syringae. , 2004, Structure.

[49]  J. Dixon,et al.  The crystal structure of Pseudomonas avirulence protein AvrPphB: A papain-like fold with a distinct substrate-binding site , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Copeland,et al.  Electronic Reprint Biological Crystallography Structure of the N-terminal Domain of Yersinia Pestis Yoph at 2.0 ˚ a Resolution Biological Crystallography Structure of the N-terminal Domain of Yersinia Pestis Yoph at 2.0 a Ê Resolution , 2022 .

[51]  Louise Creagh,et al.  Structure and biochemical analysis of a secretin pilot protein , 2005, The EMBO journal.

[52]  David Mackey,et al.  RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis , 2002, Cell.

[53]  Matthew Pokross,et al.  Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion , 2003, Nature Structural Biology.

[54]  E. Zuiderweg,et al.  Solution structure and phosphopeptide binding to the N-terminal domain of Yersinia YopH: comparison with a crystal structure. , 2002, Biochemistry.