Urbanization-driven Cladocera community shifts in the lake - a case study from Baltic region, Europe

[1]  E. Ellis,et al.  The Anthropocene is best understood as an ongoing, intensifying, diachronous event , 2023, Boreas.

[2]  H. L. Martins,et al.  Morphological Abnormalities in Bosmina Freyi Population (Cladocera: Bosminidae) from Small Urban Reservoirs , 2023, SSRN Electronic Journal.

[3]  B. Cumming,et al.  The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate Global boundary Stratotype Section and Point for the Anthropocene series , 2023, The anthropocene review.

[4]  János Korponai,et al.  Density and Diversity Differences of Contemporary and Subfossil Cladocera Assemblages: A Case Study in an Oxbow Lake , 2022, Water.

[5]  M. Mofijur,et al.  Threats, challenges and sustainable conservation strategies for freshwater biodiversity. , 2022, Environmental research.

[6]  Fang Wang,et al.  Assessing the impacts of urbanization on stream ecosystem functioning through investigating litter decomposition and nutrient uptake in a forest and a hyper-eutrophic urban stream , 2022, Ecological Indicators.

[7]  Eduardo Cejudo,et al.  Environmental stressor induces morphological alterations in zooplankton , 2022, Latin American Journal of Aquatic Research.

[8]  R. Littke,et al.  Geochemical focusing and burial of sedimentary iron, manganese, and phosphorus during lake eutrophication , 2022, Limnology and Oceanography.

[9]  H. Paerl,et al.  Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back , 2022, Inland Waters.

[10]  F. Cremona,et al.  Effects of environmental stressors and their interactions on zooplankton biomass and abundance in a large eutrophic lake , 2021, Hydrobiologia.

[11]  T. Jilbert,et al.  Human actions were responsible for both initiation and termination of varve preservation in Lake Vesijärvi, southern Finland , 2021, Journal of Paleolimnology.

[12]  A. Brauer,et al.  Advances in understanding calcite varve formation: new insights from a dual lake monitoring approach in the southern Baltic lowlands , 2021, Boreas.

[13]  S. Poikane,et al.  How to Assess the Ecological Status of Highly Humic Lakes? Development of a New Method Based on Benthic Invertebrates , 2021, Water.

[14]  Takehito Yoshida,et al.  Long‐term dynamics of a cladoceran community from an early stage of lake formation in Lake Fukami‐ike, Japan , 2020, Ecology and evolution.

[15]  P. Nõges,et al.  Post-soviet changes in nitrogen and phosphorus stoichiometry in two large non-stratified lakes and the impact on phytoplankton , 2020 .

[16]  M. Blaauw,et al.  Comparing classical and Bayesian 210Pb dating models in human-impacted aquatic environments , 2020, Quaternary Geochronology.

[17]  R. Mazzoni,et al.  Urbanization can increase the invasive potential of alien species , 2020, The Journal of animal ecology.

[18]  A. Rompaey,et al.  The impact of urbanization on agricultural dynamics: a case study in Belgium , 2020, Journal of Land Use Science.

[19]  T. Luoto,et al.  Long-Term Consequences of Water Pumping on the Ecosystem Functioning of Lake Sekšu, Latvia , 2020, Water.

[20]  T. Jilbert,et al.  Impacts of a deep reactive layer on sedimentary phosphorus dynamics in a boreal lake recovering from eutrophication , 2020, Hydrobiologia.

[21]  K. Seto,et al.  Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis , 2020, Environmental Research Letters.

[22]  T. Luoto,et al.  Historical human impact on productivity and biodiversity in a subalpine oligotrophic lake in Scandinavia , 2019, Journal of Paleolimnology.

[23]  J. Sorvari,et al.  Ultra-High-Resolution Monitoring of the Catchment Response to Changing Weather Conditions Using Online Sediment Trapping , 2019, Quaternary.

[24]  C. Carey,et al.  The effects of hypolimnetic anoxia on the diel vertical migration of freshwater crustacean zooplankton , 2018, Ecosphere.

[25]  Dagmar Frisch,et al.  Paleolimnology and resurrection ecology: The future of reconstructing the past , 2017, Evolutionary applications.

[26]  J. Christen,et al.  Bayesian Analysis of 210\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{210}$$\end{document}Pb Dating , 2017, Journal of Agricultural, Biological and Environmental Statistics.

[27]  A. Lensu,et al.  Winter climate signal in boreal clastic-biogenic varves: a comprehensive analysis of three varved records from 1890 to 1990 AD with meteorological and hydrological data from Eastern Finland , 2017 .

[28]  N. Kuczyńska-Kippen,et al.  Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies , 2017, PloS one.

[29]  A. Pistocchi,et al.  Human pressures and ecological status of European rivers , 2017, Scientific Reports.

[30]  David A. Eitelberg,et al.  A global analysis of land take in cropland areas and production displacement from urbanization , 2017 .

[31]  T. Reitalu,et al.  Past environmental change and seawater intrusion into coastal Lake Lilaste, Latvia , 2017, Journal of Paleolimnology.

[32]  T. Luoto,et al.  Relationship between cladoceran (Crustacea) functional diversity and lake trophic gradients , 2017 .

[33]  T. Luoto,et al.  Climate variability and lake ecosystem responses in western Scandinavia (Norway) during the last Millennium , 2017 .

[34]  R. Couture,et al.  Non-steady state diagenesis of organic and inorganic sulfur in lake sediments , 2016 .

[35]  M. J. Santos-Wisniewski,et al.  Morphological abnormalities in cladocerans related to eutrophication of a tropical reservoir , 2016 .

[36]  A. Correa-Metrio,et al.  Cladocera Community Composition as a Function of Physicochemical and Morphological Parameters of Dystrophic Lakes in NE Poland , 2016, Wetlands.

[37]  N. Matthews People and Fresh Water Ecosystems: Pressures, Responses and Resilience , 2016 .

[38]  M. Grosjean,et al.  Calibrating 210Pb dating results with varve chronology and independent chronostratigraphic markers: Problems and implications , 2016 .

[39]  M. Adamczuk Past, present, and future roles of small cladoceran Bosmina longirostris (O. F. Müller, 1785) in aquatic ecosystems , 2016, Hydrobiologia.

[40]  M. Kļaviņš,et al.  Records of the anthropogenic influence on different origin lake sediments of Latvia , 2015 .

[41]  A. Schimmelmann,et al.  Varves in lake sediments – a review , 2015 .

[42]  Jan H. Janse,et al.  GLOBIO-Aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems , 2015 .

[43]  W. Steffen,et al.  The trajectory of the Anthropocene: The Great Acceleration , 2015 .

[44]  Erle C. Ellis,et al.  Looking forward through the past: identification of 50 priority research questions in palaeoecology , 2014 .

[45]  A. Schartau,et al.  Cladocerans respond to differences in trophic state in deeper nutrient poor lakes from Southern Norway , 2013, Hydrobiologia.

[46]  T. Jilbert,et al.  Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea , 2013 .

[47]  J. Vermaire,et al.  Declines in littoral species richness across both spatial and temporal nutrient gradients: a palaeolimnological study of two taxonomic groups , 2012 .

[48]  P. Ekholm,et al.  Sediment resuspension: rescue or downfall of a thermally stratified eutrophic lake? , 2012, Hydrobiologia.

[49]  C. Carey,et al.  Lake trophic status can be determined by the depth distribution of sediment phosphorus , 2011 .

[50]  J. Christen,et al.  Flexible paleoclimate age-depth models using an autoregressive gamma process , 2011 .

[51]  E. S. Bakker,et al.  Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds , 2011 .

[52]  Helen Bennion,et al.  A palaeolimnological meta-database for assessing the ecological status of lakes , 2011 .

[53]  Helen Bennion,et al.  Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis , 2011 .

[54]  Marten Scheffer,et al.  Allied attack: climate change and eutrophication , 2011 .

[55]  E. Bennett,et al.  Phosphorus and land-use changes are significant drivers of cladoceran community composition and diversity: an analysis over spatial and temporal scales , 2010 .

[56]  J. Smol,et al.  Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments , 2010 .

[57]  T. Saarinen,et al.  Pollution history from 256 BC to AD 2005 inferred from the accumulation of elements in a varve record of Lake Korttajärvi in Finland , 2010 .

[58]  David Taylor,et al.  Cladocera as indicators of trophic state in Irish lakes , 2010 .

[59]  I. Donohue,et al.  Impacts of increased sediment loads on the ecology of lakes , 2009, Biological reviews of the Cambridge Philosophical Society.

[60]  D. Gilbert,et al.  Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish) , 2009 .

[61]  T. Kairesalo,et al.  Cladoceran remains in lake sediments: a comparison between plankton counts and sediment records , 2009 .

[62]  Michael Hupfer,et al.  Oxygen Controls the Phosphorus Release from Lake Sediments – a Long‐Lasting Paradigm in Limnology , 2008 .

[63]  M. Manca,et al.  Eutrophication-like response to climate warming: an analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years , 2008 .

[64]  J. Overpeck,et al.  Scanning micro‐X‐ray fluorescence elemental mapping: A new tool for the study of laminated sediment records , 2008 .

[65]  E. Jeppesen,et al.  Major changes in trophic dynamics in large, deep sub-alpine Lake Maggiore from 1940s to 2002: a high resolution comparative palaeo-neolimnological study , 2007 .

[66]  S. Strake,et al.  Toxic cyanobacteria in the lakes located in Rīga (the capital of Latvia) and its surroundings: present state of knowledge , 2006 .

[67]  Jan Köhler,et al.  Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies , 2005 .

[68]  B. Cumming,et al.  Sedimentary Cladoceran remains and their relationship to nutrients and other limnological variables in 53 lakes from British Columbia, Canada , 2003 .

[69]  W. Dean A 1500-year record of climatic and environmental change in ElkLake, Clearwater County, Minnesota II: geochemistry, mineralogy, and stableisotopes , 2002 .

[70]  P. Johansson,et al.  Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium , 2002 .

[71]  I. Renberg,et al.  The Medieval Metal Industry Was the Cradle of Modern Large-Scale Atmospheric Lead Pollution in Northern Europe , 1999 .

[72]  J. Pucher The transformation of urban transport in the Czech Republic, 1988-1998 , 1999 .

[73]  R. Battarbee The importance of palaeolimnology to lake restoration , 1999, Hydrobiologia.

[74]  M. Kļaviņš,et al.  Evaluation of plankton communities in small highly humic bog lakes in Latvia , 1998 .

[75]  C. Lindegaard,et al.  Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages , 1998 .

[76]  P. Meyers,et al.  Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes , 1997 .

[77]  C. Slomp,et al.  Phosphorus binding by poorly crystalline iron oxides in North Sea sediments , 1996 .

[78]  W. Hofmann Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments , 1996, Hydrobiologia.

[79]  M. Ketola,et al.  Effects of copper on life-history traits of Daphnia pulex and Bosmina longirostris , 1995 .

[80]  Donald A. Jackson STOPPING RULES IN PRINCIPAL COMPONENTS ANALYSIS: A COMPARISON OF HEURISTICAL AND STATISTICAL APPROACHES' , 1993 .

[81]  P. Meyers,et al.  Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments , 1993 .

[82]  J. Bertilsson,et al.  Occurrence of limnic micro-crustaceans in relation to pH and humic content in Swedish water bodies , 1990, Hydrobiologia.

[83]  J. Bertilsson,et al.  On limnic micro-crustaceans and trophic degree , 1989, Hydrobiologia.

[84]  Daniel P. Faith,et al.  Compositional dissimilarity as a robust measure of ecological distance , 1987, Vegetatio.

[85]  C. Steinberg,et al.  Cladoceran remains as indicators of lake acidification , 1986, Hydrobiologia.

[86]  H. Züllig,et al.  Cladoceran remains as evidence of change in trophic state in three Swiss lakes , 1983, Hydrobiologia.

[87]  Walter E. Dean,et al.  Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods , 1974 .

[88]  Yuxuan Zhao,et al.  Urbanization has changed the distribution pattern of zooplankton species diversity and the structure of functional groups , 2021 .

[89]  T. Alliksaar,et al.  Palaeolimnological assessment of the reference conditions and ecological status of lakes in Estonia - implications for the European Union Water Framework Directive , 2009 .

[90]  A. Čeirāns Zooplankton indicators of trophy in Latvian lakes , 2005 .

[91]  M. Kļaviņš,et al.  Water-Quality Changes in Latvia and Riga 1980–2000: Possibilities and Problems , 2001, Ambio.

[92]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[93]  André F. Lotter,et al.  Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results , 2001 .

[94]  E. Grimm CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares , 1987 .

[95]  E. H. Simpson Measurement of Diversity , 1949, Nature.