A Variational Bayesian Approach for Image Restoration—Application to Image Deblurring With Poisson–Gaussian Noise

In this paper, a methodology is investigated for signal recovery in the presence of non-Gaussian noise. In contrast with regularized minimization approaches often adopted in the literature, in our algorithm the regularization parameter is reliably estimated from the observations. As the posterior density of the unknown parameters is analytically intractable, the estimation problem is derived in a variational Bayesian framework where the goal is to provide a good approximation to the posterior distribution in order to compute posterior mean estimates. Moreover, a majorization technique is employed to circumvent the difficulties raised by the intricate forms of the non-Gaussian likelihood and of the prior density. We demonstrate the potential of the proposed approach through comparisons with state-of-the-art techniques that are specifically tailored to signal recovery in the presence of mixed Poisson–Gaussian noise. Results show that the proposed approach is efficient and achieves performance comparable with other methods where the regularization parameter is manually tuned from the ground truth.

[1]  Nelly Pustelnik,et al.  Nonsmooth Convex Optimization for Structured Illumination Microscopy Image Reconstruction , 2018, Inverse problems.

[2]  J. Pesquet,et al.  Wavelet-Based Image Deconvolution and Reconstruction , 2016 .

[3]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[4]  Mila Nikolova,et al.  Analysis of Half-Quadratic Minimization Methods for Signal and Image Recovery , 2005, SIAM J. Sci. Comput..

[5]  Nelly Pustelnik,et al.  A Nonlocal Structure Tensor-Based Approach for Multicomponent Image Recovery Problems , 2014, IEEE Transactions on Image Processing.

[6]  Florent Krzakala,et al.  Approximate message passing with restricted Boltzmann machine priors , 2015, ArXiv.

[7]  Stefan M. Moser,et al.  Capacity Results of an Optical Intensity Channel With Input-Dependent Gaussian Noise , 2012, IEEE Transactions on Information Theory.

[8]  Valeria Ruggiero,et al.  Numerical Methods for Parameter Estimation in Poisson Data Inversion , 2014, Journal of Mathematical Imaging and Vision.

[9]  George Papandreou,et al.  Gaussian sampling by local perturbations , 2010, NIPS.

[10]  Tieyong Zeng,et al.  A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise , 2013, SIAM J. Imaging Sci..

[11]  Pichid Kittisuwan Medical image denoising using simple form of MMSE estimation in Poisson–Gaussian noise model , 2016 .

[12]  Yonina C. Eldar Generalized SURE for Exponential Families: Applications to Regularization , 2008, IEEE Transactions on Signal Processing.

[13]  R. Horgan,et al.  Statistical Field Theory , 2014 .

[14]  Wenwei Ying,et al.  A blind receiver with multiple antennas in impulsive noise with Gaussian mixtures through MCMC approaches , 2012, 2012 IEEE 14th International Conference on Communication Technology.

[15]  Thomas Rodet,et al.  A Measure-Theoretic Variational Bayesian Algorithm for Large Dimensional Problems , 2014, SIAM J. Imaging Sci..

[16]  Alfred O. Hero,et al.  A Survey of Stochastic Simulation and Optimization Methods in Signal Processing , 2015, IEEE Journal of Selected Topics in Signal Processing.

[17]  M. Bertero,et al.  The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise , 2008 .

[18]  Michael Unser,et al.  Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications , 2012, IEEE Transactions on Image Processing.

[19]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[20]  Ming Yan,et al.  Restoration of Images Corrupted by Impulse Noise and Mixed Gaussian Impulse Noise using Blind Inpainting , 2013, SIAM J. Imaging Sci..

[21]  Luisa Verdoliva,et al.  A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Luca Zanni,et al.  A discrepancy principle for Poisson data , 2010 .

[23]  Nelly Pustelnik,et al.  Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization , 2009, IEEE Transactions on Image Processing.

[24]  Alessandro Foi,et al.  Noise Parameter Mismatch in Variance Stabilization, With an Application to Poisson–Gaussian Noise Estimation , 2014, IEEE Transactions on Image Processing.

[25]  Michael Elad,et al.  Poisson Inverse Problems by the Plug-and-Play scheme , 2015, J. Vis. Commun. Image Represent..

[26]  Laurent Daudet,et al.  Boltzmann Machine and Mean-Field Approximation for Structured Sparse Decompositions , 2012, IEEE Transactions on Signal Processing.

[27]  Thierry Blu,et al.  Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[28]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[29]  Fionn Murtagh,et al.  Automatic Noise Estimation from the Multiresolution Support , 1998 .

[30]  Jean-François Giovannelli,et al.  Sampling High-Dimensional Gaussian Distributions for General Linear Inverse Problems , 2012, IEEE Signal Processing Letters.

[31]  Frédéric Champagnat,et al.  A connection between half-quadratic criteria and EM algorithms , 2004, IEEE Signal Processing Letters.

[32]  Abbas El Gamal,et al.  Analysis of temporal noise in CMOS photodiode active pixel sensor , 2001, IEEE J. Solid State Circuits.

[33]  Alessandro Foi,et al.  Gaussian-Cauchy mixture modeling for robust signal-dependent noise estimation , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[34]  Audrey Repetti,et al.  Algorithmes d'optimisation en grande dimension : applications à la résolution de problèmes inverses. (Large scale optimization algorithms: applications to solution of inverse problem) , 2015 .

[35]  Thierry Blu,et al.  Multiframe sure-let denoising of timelapse fluorescence microscopy images , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[36]  Steve McLaughlin,et al.  Spectral Unmixing of Multispectral Lidar Signals , 2015, IEEE Transactions on Signal Processing.

[37]  Hugues Talbot,et al.  Image Noise and Digital Image Forensics , 2015, IWDW.

[38]  Athina P. Petropulu,et al.  Power-Law Shot Noise and Its Relationship To Long-Memory �-Stable Processes , 2000 .

[39]  Guy Demoment,et al.  Image reconstruction and restoration: overview of common estimation structures and problems , 1989, IEEE Trans. Acoust. Speech Signal Process..

[40]  Zachary T. Harmany,et al.  Sparse poisson intensity reconstruction algorithms , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[41]  José M. Bioucas-Dias,et al.  Maximum-a-posteriori estimation with unknown regularisation parameters , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[42]  Alessandro Foi,et al.  Poisson-gaussian denoising using the exact unbiased inverse of the generalized anscombe transformation , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[43]  Aongus McCarthy,et al.  Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data , 2015, IEEE Transactions on Image Processing.

[44]  Karen O. Egiazarian,et al.  Deblurring of Poissonian images using BM3D frames , 2011, Optical Engineering + Applications.

[45]  Thierry Blu,et al.  Monte-Carlo Sure: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms , 2008, IEEE Transactions on Image Processing.

[46]  Mário A. T. Figueiredo,et al.  Parameter Estimation for Blind and Non-Blind Deblurring Using Residual Whiteness Measures , 2013, IEEE Transactions on Image Processing.

[47]  Hugues Talbot,et al.  A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[48]  S. Yun,et al.  Frame-based Poisson image restoration using a proximal linearized alternating direction method , 2013 .

[49]  Nelly Pustelnik,et al.  Nested Iterative Algorithms for Convex Constrained Image Recovery Problems , 2008, SIAM J. Imaging Sci..

[50]  Carola-Bibiane Schönlieb,et al.  Bilevel approaches for learning of variational imaging models , 2015, ArXiv.

[51]  Aggelos K. Katsaggelos,et al.  Variational Bayesian Super Resolution , 2011, IEEE Transactions on Image Processing.

[52]  Henri Lantéri,et al.  Restoration of Astrophysical Images—The Case of Poisson Data with Additive Gaussian Noise , 2005, EURASIP J. Adv. Signal Process..

[53]  Alessandro Foi,et al.  Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise , 2013, IEEE Transactions on Image Processing.

[54]  Alessandro Foi,et al.  Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising , 2011, IEEE Transactions on Image Processing.

[55]  Joakim Lindblad,et al.  Blind restoration of images degraded with mixed poisson-Gaussian noise with application in transmission electron microscopy , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[56]  Ayan Chakrabarti,et al.  Image Restoration with Signal-dependent Camera Noise , 2012, ArXiv.

[57]  Hugues Talbot,et al.  An EM Approach for Time-Variant Poisson-Gaussian Model Parameter Estimation , 2014, IEEE Transactions on Signal Processing.

[58]  Yonina C. Eldar,et al.  The Projected GSURE for Automatic Parameter Tuning in Iterative Shrinkage Methods , 2010, Applied and Computational Harmonic Analysis.

[59]  P. Hansen,et al.  Exploiting Residual Information in the Parameter Choice for Discrete Ill-Posed Problems , 2006 .

[60]  Johnathan M. Bardsley,et al.  Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation , 2009 .

[61]  Émilie Chouzenoux,et al.  A penalized weighted least squares approach for restoring data corrupted with signal-dependent noise , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[62]  R. White,et al.  Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[63]  Gabriele Steidl,et al.  Epigraphical Projection for Solving Least Squares Anscombe Transformed Constrained Optimization Problems , 2013, SSVM.

[64]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[65]  Jérôme Idier,et al.  Convex half-quadratic criteria and interacting auxiliary variables for image restoration , 2001, IEEE Trans. Image Process..

[66]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Jean-Christophe Pesquet,et al.  Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian noise , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[68]  Amel Benazza-Benyahia,et al.  An auxiliary variable method for Langevin based MCMC algorithms , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[69]  Valeria Ruggiero,et al.  An alternating extragradient method for total variation-based image restoration from Poisson data , 2011 .

[70]  Somaya Al-Máadeed,et al.  Undecimated wavelet-based Bayesian denoising in mixed Poisson-Gaussian noise with application on medical and biological images , 2014, 2014 4th International Conference on Image Processing Theory, Tools and Applications (IPTA).

[71]  Aggelos K. Katsaggelos,et al.  Variational Bayesian Methods For Multimedia Problems , 2014, IEEE Transactions on Multimedia.

[72]  Richard M. Leahy,et al.  Spatiotemporal reconstruction of list-mode PET data , 2002, IEEE Transactions on Medical Imaging.

[73]  Raymond H. Chan,et al.  Fast Two-Phase Image Deblurring Under Impulse Noise , 2009, Journal of Mathematical Imaging and Vision.

[74]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[75]  Xinhao Liu,et al.  Practical Signal-Dependent Noise Parameter Estimation From a Single Noisy Image , 2014, IEEE Transactions on Image Processing.

[76]  J. Aujol,et al.  Some proximal methods for Poisson intensity CBCT and PET , 2012 .

[77]  Fionn Murtagh,et al.  Image restoration with noise suppression using a multiresolution support. , 1995 .

[78]  Laurent Condat,et al.  Semi-local total variation for regularization of inverse problems , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[79]  Thomas Rodet,et al.  Efficient Variational Bayesian Approximation Method Based on Subspace Optimization , 2015, IEEE Transactions on Image Processing.

[80]  Amel Benazza-Benyahia,et al.  A SURE Approach for Digital Signal/Image Deconvolution Problems , 2008, IEEE Transactions on Signal Processing.

[81]  Jian Yu,et al.  Restoration of images corrupted by mixed Gaussian-impulse noise via l1-l0 minimization , 2011, Pattern Recognit..

[82]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[83]  Hugues Talbot,et al.  A Convex Approach for Image Restoration with Exact Poisson-Gaussian Likelihood , 2015, SIAM J. Imaging Sci..

[84]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[85]  Zuowei Shen,et al.  A reweighted $l^2$ method for image restoration with Poisson and mixed Poisson-Gaussian noise , 2015 .

[86]  Jean-Luc Starck,et al.  Deconvolution under Poisson noise using exact data fidelity and synthesis or analysis sparsity priors , 2011, 1103.2213.

[87]  Mohamed-Jalal Fadili,et al.  Stein Unbiased GrAdient estimator of the Risk (SUGAR) for Multiple Parameter Selection , 2014, SIAM J. Imaging Sci..

[88]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[89]  V. Šmídl,et al.  The Variational Bayes Method in Signal Processing , 2005 .

[90]  Simon J. Godsill,et al.  Joint Bayesian removal of impulse and background noise , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[91]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[92]  Guillaume Bouchard,et al.  Fast Variational Bayesian Inference for Non-Conjugate Matrix Factorization Models , 2012, AISTATS.

[93]  Michael Unser,et al.  Poisson Image Reconstruction With Hessian Schatten-Norm Regularization , 2013, IEEE Transactions on Image Processing.

[94]  Lotfi Chaâri,et al.  Fast Joint Detection-Estimation of Evoked Brain Activity in Event-Related fMRI Using a Variational Approach , 2013, IEEE Transactions on Medical Imaging.

[95]  Rebecca Willett,et al.  Poisson Noise Reduction with Non-local PCA , 2012, Journal of Mathematical Imaging and Vision.

[96]  Michael K. Ng,et al.  A New Total Variation Method for Multiplicative Noise Removal , 2009, SIAM J. Imaging Sci..

[97]  S. Bonettini,et al.  New convergence results for the scaled gradient projection method , 2014, 1406.6601.