Heterozygous diploid and interspecies SCRaMbLEing

[1]  Michael J. Shen,et al.  Precise control of SCRaMbLE in synthetic haploid and diploid yeast , 2018, Nature Communications.

[2]  B. Mueller‐Roeber,et al.  L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast , 2018, Nature Communications.

[3]  Rebecca R. Beach,et al.  Aneuploidy Causes Non-genetic Individuality , 2017, Cell.

[4]  Yizhi Cai,et al.  Design of a synthetic yeast genome , 2017, Science.

[5]  Jianhui Gong,et al.  Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome , 2017, Science.

[6]  Yan Wang,et al.  “Perfect” designer chromosome V and behavior of a ring derivative , 2017, Science.

[7]  Jianhui Gong,et al.  Engineering the ribosomal DNA in a megabase synthetic chromosome , 2017, Science.

[8]  Feng Gao,et al.  Bug mapping and fitness testing of chemically synthesized chromosome X , 2017, Science.

[9]  H. K. Dai,et al.  Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond , 2017, Science.

[10]  Jianhui Gong,et al.  SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes , 2016, Genome research.

[11]  Amir Feizi,et al.  Altered sterol composition renders yeast thermotolerant , 2014, Science.

[12]  J. Bähler,et al.  TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast , 2013, Aging cell.

[13]  Y. Pilpel,et al.  Chromosomal duplication is a transient evolutionary solution to stress , 2012, Proceedings of the National Academy of Sciences.

[14]  Jef Boeke,et al.  The Saccharomyces cerevisiae SCRaMbLE system and genome minimization , 2012, Bioengineered bugs.

[15]  Susan Bullman,et al.  Molecular diagnostics , 2012, Bioengineered bugs.

[16]  Joel S. Bader,et al.  Synthetic chromosome arms function in yeast and generate phenotypic diversity by design , 2011, Nature.

[17]  Nevan J Krogan,et al.  Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action , 2010, Molecular systems biology.

[18]  Francisco A. Cubillos,et al.  Generation of a large set of genetically tractable haploid and diploid Saccharomyces strains. , 2009, FEMS yeast research.

[19]  Robert P. Davey,et al.  Population genomics of domestic and wild yeasts , 2008, Nature.

[20]  Robbie Loewith,et al.  Caffeine extends yeast lifespan by targeting TORC1 , 2008, Molecular microbiology.

[21]  G. Ammerer,et al.  Activation of the G2/M-Specific Gene CLB2 Requires Multiple Cell Cycle Signals , 2007, Molecular and Cellular Biology.

[22]  Ted Powers,et al.  Caffeine Targets TOR Complex I and Provides Evidence for a Regulatory Link between the FRB and Kinase Domains of Tor1p* , 2006, Journal of Biological Chemistry.

[23]  M. Gartenberg,et al.  Controlling gene expression in yeast by inducible site-specific recombination. , 2000, Nucleic acids research.

[24]  Andreas D. Baxevanis,et al.  The Molecular Biology Database Collection: an online compilation of relevant database resources , 2000, Nucleic Acids Res..

[25]  P. Burgers,et al.  Characterization of the Two Small Subunits of Saccharomyces cerevisiae DNA Polymerase δ* , 1998, The Journal of Biological Chemistry.

[26]  J. Boeke,et al.  Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR‐mediated gene disruption and other applications , 1998, Yeast.

[27]  N. Pfanner,et al.  Identification of the essential yeast protein MIM17, an integral mitochondrial inner membrane protein involved in protein import , 1994, FEBS letters.

[28]  R. Hoess,et al.  The role of the loxP spacer region in P1 site-specific recombination. , 1986, Nucleic acids research.

[29]  J. Plaat,et al.  Fusion of yeast spheroplasts. , 1977 .

[30]  P. van Solingen,et al.  Fusion of yeast spheroplasts , 1977, Journal of bacteriology.