LCC-Demons: a robust and accurate dieomorphic registration algorithm

Non-linear registration is a key instrument for computational anatomy to study the morphology of organs and tissues. However, in order to be an eective instrument for the clinical practice, registration algorithms must be computationally ecient, accurate and most importantly robust to the multiple biases aecting medical images. In this work we propose a fast and robust registration framework based on the log-Demons dieomorphic registration algorithm. The transformation is parameterized by stationary velocity elds (SVFs), and the similarity metric implements a symmetric local correlation coecient (LCC). Moreover, we show how the SVF setting provides a stable and consistent numerical scheme for the computation of the Jacobian determinant and the ux of the deformation across the boundaries of a given region. Thus, it provides a robust evaluation of spatial changes. We tested the LCC-Demons in the inter-subject registration setting, by comparing with state-of-the-art registration algorithms on public available datasets, and in the intra-subject longitudinal registration problem, for the statistically powered measurements of the longitudinal atrophy in Alzheimer’s disease. Experimental results show that LCC-Demons is a generic, exible, ecient

[1]  Nick C. Fox,et al.  The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI , 1997, IEEE Transactions on Medical Imaging.

[2]  Sébastien Ourselin,et al.  Log-Euclidean free-form deformation , 2011, Medical Imaging.

[3]  Nick C Fox,et al.  Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images , 2001, The Lancet.

[4]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[5]  Stephen M. Smith,et al.  Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis , 2002, NeuroImage.

[6]  Jean-Francois Mangin,et al.  Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry , 2012, MICCAI.

[7]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[8]  C. Almli,et al.  Unbiased nonlinear average age-appropriate brain templates from birth to adulthood , 2009, NeuroImage.

[9]  Nicholas Ayache,et al.  Disentangling the normal aging from the pathological Alzheimer's disease progression on cross-sectional structural MR images , 2012 .

[10]  Monica Hernandez,et al.  Contributions to 3D Diffeomorphic Atlas Estimation: Application to Brain Images , 2007, MICCAI.

[11]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[12]  Stephen M. Smith,et al.  A Bayesian model of shape and appearance for subcortical brain segmentation , 2011, NeuroImage.

[13]  Hervé Delingette,et al.  International Journal of Computer Vision Manuscript No. 10.1007/s11263-010-0405-z The final publication is available at www.springerlink.com iLogDemons: A Demons-Based Registration Algorithm for Tracking Incompressible Elastic Biological Tissues , 2022 .

[14]  P. Gács,et al.  Algorithms , 1992 .

[15]  Michael Weiner,et al.  Robust atrophy rate measurement in Alzheimer's disease using multi-site serial MRI: Tissue-specific intensity normalization and parameter selection , 2010, NeuroImage.

[16]  Zujun Hou,et al.  A Review on MR Image Intensity Inhomogeneity Correction , 2006, Int. J. Biomed. Imaging.

[17]  Xavier Pennec,et al.  Log-Domain Diffeomorphic Registration of Diffusion Tensor Images , 2010, WBIR.

[18]  Alan C. Evans,et al.  A Unified Statistical Approach to Deformation-Based Morphometry , 2001, NeuroImage.

[19]  Hervé Delingette,et al.  LogDemons Revisited: Consistent Regularisation and Incompressibility Constraint for Soft Tissue Tracking in Medical Images , 2010, MICCAI.

[20]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[21]  Kiralee M. Hayashi,et al.  Dynamics of Gray Matter Loss in Alzheimer's Disease , 2003, The Journal of Neuroscience.

[22]  Daniel Rueckert,et al.  Cerebral atrophy measurements using Jacobian integration: Comparison with the boundary shift integral , 2006, NeuroImage.

[23]  Nicholas Ayache,et al.  Mapping the Effects of Aβ 1 - 42 Levels on the Longitudinal Changes in Healthy Aging: Hierarchical Modeling Based on Stationary Velocity Fields , 2011, MICCAI.

[24]  Tom Vercauteren,et al.  Image registration and mosaicing for dynamic In vivo fibered confocal microscopy : Image Registration and Mosaicing for Dynamic In Vivo Fibered Confocal Microscopy. (Recalage et mosaïques d'images pour la microscopie confocale fibrée dynamique in vivo) , 2008 .

[25]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[26]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[27]  S. Resnick,et al.  One-year age changes in MRI brain volumes in older adults. , 2000, Cerebral cortex.

[28]  Maxime Sermesant,et al.  A Near-Incompressible Poly-affine Motion Model for Cardiac Function Analysis , 2012, STACOM.

[29]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[30]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[31]  Nick C. Fox,et al.  Algorithms, atrophy and Alzheimer's disease: Cautionary tales for clinical trials , 2011, NeuroImage.

[32]  Nick C. Fox,et al.  Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal Alzheimer's disease images , 2008, NeuroImage.

[33]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[34]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[35]  Marie-Pierre Jolly,et al.  Cardiac segmentation in MR cine data using inverse consistent deformable registration , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[36]  Leo Grady,et al.  Spectral Demons - Image Registration via Global Spectral Correspondence , 2012, ECCV.

[37]  Gerardo Hermosillo,et al.  Well-Posedness of Two Nonrigid Multimodal Image Registration Methods , 2004, SIAM J. Appl. Math..

[38]  B. Dawant,et al.  Characterizing changes in MR images with color-coded Jacobians. , 2004, Magnetic resonance imaging.

[39]  Kaleem Siddiqi,et al.  Flux Maximizing Geometric Flows , 2001, ICCV.

[40]  P. Thomas Fletcher,et al.  Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[41]  Nicholas Ayache,et al.  c ○ 2004 Kluwer Academic Publishers. Manufactured in The Netherlands. Isotropic Energies, Filters and Splines for Vector Field Regularization , 2022 .

[42]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[43]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[44]  Nick C Fox,et al.  Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. , 2000, Archives of neurology.

[45]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[46]  Colin Studholme,et al.  Automated 3-D registration of MR and CT images of the head , 1996, Medical Image Anal..

[47]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[48]  Nicholas Ayache,et al.  Probabilistic Flux Analysis of Cerebral Longitudinal Atrophy , 2012 .

[49]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[50]  Nicholas Ayache,et al.  REGIONAL FLUX ANALYSIS OF LONGITUDINAL ATROPHY IN ALZHEIMER'S DISEASE , 2012, Alzheimer's & Dementia.

[51]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[52]  Brian B. Avants,et al.  Spatiotemporal Normalization for Longitudinal Analysis of Gray Matter Atrophy in Frontotemporal Dementia , 2007, MICCAI.

[53]  R. Stefanescu,et al.  Parallel nonlinear registration of medical images with a priori information on anatomy and pathology , 2005 .

[54]  A. Trouvé,et al.  Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. , 2012, Journal of human evolution.

[55]  Nicholas Ayache,et al.  Iconic feature based nonrigid registration: the PASHA algorithm , 2003, Comput. Vis. Image Underst..

[56]  A L Boyer,et al.  An image correlation procedure for digitally reconstructed radiographs and electronic portal images. , 1995, International journal of radiation oncology, biology, physics.

[57]  Xavier Pennec,et al.  Geometry-Aware Multiscale Image Registration via OBBTree-Based Polyaffine Log-Demons , 2011, MICCAI.

[58]  Paul M. Thompson,et al.  Statistical Properties of Jacobian Maps and the Realization of Unbiased Large-Deformation Nonlinear Image Registration , 2007, IEEE Transactions on Medical Imaging.