Lateral variation in upper mantle viscosity: role of water

Differences in the viscosity of the earth’s upper mantle beneath the western US (f10 18 –10 19 Pa s) and global average values based on glacial isostatic adjustment and other data (f10 20 –10 21 Pa s) are generally ascribed to differences in temperature. We compile geochemical data on the water contents of western US lavas and mantle xenoliths, compare these data to water solubility in olivine, and calculate the corresponding effective viscosity of olivine, the major constituent of the upper mantle, using a power law creep rheological model. These data and calculations suggest that the low viscosities of the western US upper mantle reflect the combined effect of high water concentration and elevated temperature. The high water content of the western US upper mantle may reflect the long history of Farallon plate subduction, including flat slab subduction, which effectively advected water as far inland as the Colorado Plateau, hydrating and weakening the upper mantle. D 2004 Elsevier B.V. All rights reserved.

[1]  F. Pollitz Transient Rheology of the uppermost mantle beneath the Mojave Desert , 2003 .

[2]  R. Lange,et al.  Pliocene Potassic Magmas from the Kings River Region, Sierra Nevada, California: Evidence for Melting of a Subduction- Modified Mantle , 1999 .

[3]  G. Rossman,et al.  Water content of mantle garnets , 1984 .

[4]  A. Schultz,et al.  Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data , 1995 .

[5]  D. Kohlstedt,et al.  Substantial hydrogen solubility in olivine and implications for water storage in the mantle , 1992, Nature.

[6]  G. Nolet,et al.  Seismic image of the subducted trailing fragments of the Farallon plate , 1997, Nature.

[7]  K. Furlong,et al.  Cenozoic volcanism in the California Coast Ranges: Numerical solutions , 1992 .

[8]  Falk Amelung,et al.  Reservoir-induced deformation and continental rheology in vicinity of Lake Mead, Nevada , 2000 .

[9]  M. G. Best Mantle‐derived amphibole within inclusions in alkalic‐basaltic lavas , 1974 .

[10]  D. Forsyth,et al.  The anisotropic structure of the upper mantle in the Pacific , 1989 .

[11]  K. Priestley,et al.  Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere , 2000 .

[12]  D. Vaniman,et al.  Petrology and geochemistry of hawaiite lavas from Crater Flat, Nevada , 1982 .

[13]  I. Jackson The Earth's Mantle: Composition, Structure, and Evolution , 1998 .

[14]  S. Eggins,et al.  H2O Abundance in Depleted to Moderately Enriched Mid-ocean Ridge Magmas; Part I: Incompatible Behaviour, Implications for Mantle Storage, and Origin of Regional Variations , 2000 .

[15]  T. Jordan,et al.  Lehmann Discontinuity as the Base of an Anisotropic Layer Beneath Continents , 1995, Science.

[16]  S. Karato Mapping water content in the upper mantle , 2013 .

[17]  K. Furlong Thermal-rheologic evolution of the upper mantle and the development of the San Andreas fault system , 1993 .

[18]  Paul Johnston,et al.  Sea‐level change, glacial rebound and mantle viscosity fornorthern Europe , 1998 .

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  F. Marone,et al.  Seismic Evidence for Water Deep in Earth's Upper Mantle , 2003, Science.

[21]  B. Evans,et al.  Strength of the lithosphere: Constraints imposed by laboratory experiments , 1995 .

[22]  K. Pitzer,et al.  EQUATIONS OF STATE VALID CONTINUOUSLY FROM ZERO TO EXTREME PRESSURES FOR H2O AND CO2 , 1994 .

[23]  C. Snelson,et al.  Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin , 2003 .

[24]  D. Yuen,et al.  Polar wandering and the forced responses of a rotating, multilayered, viscoelastic planet , 1981 .

[25]  D. Smith Insights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisons , 2000 .

[26]  A. Chodos,et al.  Titanoclinohumite: A possible mineralogical site for water in the upper mantle , 1970 .

[27]  Robert B. Smith,et al.  Dynamic elevation of the Cordillera, western United States , 2000 .

[28]  G. Nolet,et al.  Low S velocities under the Tornquist‐Teisseyre zone: Evidence for water injection into the transition zone by subduction , 1994 .

[29]  J. Mitrovica,et al.  Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial , 1997 .

[30]  P. Bird Laramide crustal thickening event in the Rocky Mountain Foreland and Great Plains , 1984 .

[31]  Douglas J. Smith Chlorite-rich ultramafic reaction zones in Colorado Plateau xenoliths: recorders of sub-Moho hydration , 1995 .

[32]  C. Langmuir,et al.  Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt , 2002, Nature.

[33]  K. Lambeck,et al.  The Earth's Mantle: The Viscosity of the Mantle: Evidence from Analyses of Glacial-Rebound Phenomena , 1998 .

[34]  M. Paterson,et al.  The role of water in the deformation of dunite , 1984 .

[35]  J. G. Williams,et al.  Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation , 1983, Nature.

[36]  John J. Clague,et al.  Postglacial rebound at the northern Cascadia subduction zone , 2000 .

[37]  R. Harmon,et al.  Stable isotope relations in an open magma system, Laacher See, Eifel (FRG) , 1987 .

[38]  W. R. Peltier,et al.  Postglacial variations in the level of the sea: Implications for climate dynamics and solid‐Earth geophysics , 1998 .

[39]  D. Kohlstedt,et al.  Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine , 1993 .

[40]  G. Rossman,et al.  Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum , 2003 .

[41]  John B. Rundle,et al.  Surface deformation due to a strike-slip fault in an elastic gravitational layer overlying a viscoelastic gravitational half-space , 1996 .

[42]  J. Mitrovica,et al.  New inferences of mantle viscosity from joint inversion of long‐wavelength mantle convection and post‐glacial rebound data , 1996 .

[43]  D. Matson,et al.  Volatiles in amphiboles from xenoliths, Vulcan's Throne, Grand Canyon, Arizona, USA , 1984 .

[44]  G. Rossman,et al.  The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa , 1992 .

[45]  Giorgio Ranalli,et al.  Rheology of the earth , 1987 .

[46]  David C. Smith Eclogites and eclogite-facies rocks , 1988 .

[47]  A. Sobolev,et al.  The H2O content of basalt glasses from Southwest Pacific back-arc basins , 1993 .

[48]  F. Spera,et al.  On the origin of an amphibole-rich vein in a peridotite inclusion from the Lunar Crater Volcanic Field, Nevada, U.S.A. , 1981 .

[49]  R. Harmon,et al.  Open-system O-isotope behaviour and trace element enrichment in the sub-Eifel mantle , 1988 .

[50]  K. Lambeck,et al.  Glacial rebound of the British Isles—III. Constraints on mantle viscosity , 1996 .

[51]  G. L. Farmer,et al.  How Laramide-Age Hydration of North American Lithosphere by the Farallon Slab Controlled Subsequent Activity in the Western United States , 2003 .

[52]  Bradford H. Hager,et al.  Localization of the gravity field and the signature of glacial rebound , 1997, Nature.

[53]  Eugene I. Smith,et al.  A mantle melting profile across the Basin and Range, SW USA , 2002 .

[54]  A. Sheehan,et al.  Seismic evidence for partial lithospheric delamination model of Colorado Plateau Uplifts , 2001 .

[55]  W. Peltier,et al.  Glacial isostasy and relative sea level: A global finite element model , 1978 .

[56]  Á. Höskuldsson,et al.  Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts , 2002 .

[57]  K. Aoki Titanochondrodite and titanoclinohumite derived from the upper mantle in the Buell Park kimberlite, Arizona, USA , 1976 .

[58]  A. Lachenbruch,et al.  Thermal regime of the southern Basin and Range Provincec 1. Heat flow data from Arizona and the Mojave Desert of California and Nevada , 1994 .

[59]  T. Atwater Plate tectonic history of the northeast Pacific and western North America , 1989 .

[60]  G. Rossman,et al.  Water in boninite glass and coexisting orthopyroxene: concentration and partitioning , 1995 .

[61]  N. Métrich,et al.  Fluid‐magma decoupling in a hot‐spot volcano , 1999 .

[62]  S. Newman,et al.  The role of water in the petrogenesis of Mariana trough magmas , 1994 .

[63]  Fred F. Pollitz,et al.  Mobility of continental mantle: Evidence from postseismic geodetic observations following the 1992 Landers earthquake , 2000 .

[64]  F. Pollitz,et al.  Mantle Flow Beneath a Continental Strike-Slip Fault: Postseismic Deformation After the 1999 Hector Mine Earthquake , 2001, Science.

[65]  S. Peacock Large-scale hydration of the lithosphere above subducting slabs , 1993 .

[66]  G. Schubert,et al.  The viscosity of the earth's mantle , 1976 .

[67]  Walter D. Mooney,et al.  Thermal thickness and evolution of Precambrian lithosphere: A global study , 2001 .

[68]  G. Spada,et al.  Excitation of true polar wander by subduction , 1992, Nature.

[69]  K. Lambeck,et al.  Glacial isostatic adjustment and the radial viscosity profile from inverse modeling , 2002 .

[70]  Takuya Nishimura,et al.  Rheology of the lithosphere inferred from postseismic uplift following the 1959 Hebgen Lake earthquake , 2002 .

[71]  W. Peltier Chapter 4 Global glacial isostatic adjustment and modern instrumental records of relative sea level history , 2001 .

[72]  R. Doig,et al.  Eclogite nodules from kimberlite pipes of the Colorado plateau—samples of subducted Franciscan-type oceanic lithosphere , 1973 .

[73]  D. Bell Hydroxyl in mantle minerals , 1993 .

[74]  James L. Davis,et al.  Investigation of glacial isostatic adjustment in the northeast U.S. using GPS measurements , 2002 .

[75]  M. Hirschmann,et al.  Water Partition Coefficients Between Nominally Anhydrous Minerals and Basaltic Melts: Implication on Mantle Melting , 2004 .

[76]  D. Robertson,et al.  The application of geodetic radio interferometric surveying to the monitoring of sea-level , 1986 .

[77]  Robert J. Stern,et al.  SUBDUCTION ZONES , 2002 .

[78]  K. Kobayashi,et al.  Fate of the subducted Farallon plate inferred from eclogite xenoliths in the Colorado Plateau , 2003 .

[79]  F. R. Boyd,et al.  The mantle sample : inclusions in kimberlites and other volcanics , 1979 .

[80]  Magali I. Billen,et al.  A low viscosity wedge in subduction zones , 2001 .

[81]  D. Argus Postglacial rebound from VLBI geodesy: On establishing vertical reference , 1996 .

[82]  S. Myers,et al.  Crust and mantle structure across the Basin and Range‐Colorado Plateau boundary at 37°N latitude and implications for Cenozoic extensional mechanism , 1995 .

[83]  J. Delaney,et al.  Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses , 1988 .

[84]  J. Johansson,et al.  Space-Geodetic Constraints on Glacial Isostatic Adjustment in Fennoscandia , 2001, Science.

[85]  S. Mertzman,et al.  Spinel-facies peridotites from the Kaapvaal root , 1998 .

[86]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[87]  S. Grand Mantle shear structure beneath the Americas and surrounding oceans , 1994 .

[88]  P. Wallace Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas , 1998 .

[89]  R. Hyndman,et al.  An inverted continental Moho and serpentinization of the forearc mantle , 2002, Nature.

[90]  W. R. Peltier,et al.  Validation of the ICE‐3G Model of Würm‐Wisconsin Deglaciation using a global data base of relative sea level histories , 1992 .

[91]  M. G. Best Amphibole-bearing Cumulate Inclusions, Grand Canyon, Arizona and their bearing on Silica-Undersaturated Hydrous Magmas in the Upper Mantle , 1975 .

[92]  R. Poreda,et al.  Volatiles in basaltic glasses from the Easter‐Salas y Gomez Seamount Chain and Easter Microplate: Implications for geochemical cycling of volatile elements , 2001 .

[93]  J. Severinghaus,et al.  Chapter 1: Cenozoic geometry and thermal state of the subducting slabs beneath western North America , 1990 .

[94]  F. R. Boyd Compositional distinction between oceanic and cratonic lithosphere , 1989 .

[95]  Andrew J. Plater,et al.  Book reviewSea-level change: Roger Revelle; Studies in Geophysics, National Research Council, National Academy Press, Washington, DC, 1990; xii + 246 pp.; USD 29.95, GBP 25.75; ISBN 0-309-04039 , 1992 .

[96]  K. Langer,et al.  Hydroxyl defects in garnets from mantle xenoliths in kimberlites of the Siberian platform , 1998 .

[97]  S. Newman,et al.  Volcanism in the Sumisu Rift, I. Major element, volatile, and stable isotope geochemistry , 1990 .

[98]  G. Rossman,et al.  Abundance and Partitioning of OH in a High-pressure Magmatic System: Megacrysts from the Monastery Kimberlite, South Africa , 2004 .

[99]  S. Karato On the Lehmann discontinuity , 1992 .

[100]  L. V. Morrison,et al.  Long-term fluctuations in the Earth’s rotation: 700 BC to AD 1990 , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[101]  H. Keppler,et al.  Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4 , 1996 .

[102]  P. Renne,et al.  Potassic volcanism near Mono basin, California: Evidence for high water and oxygen fugacities inherited from subduction , 1993 .

[103]  D. Bell,et al.  D/H ratios and H2O contents of mantle-derived amphibole megacrysts from Dish Hill, California , 1994 .

[104]  W. McDonough,et al.  Thermal structure, thickness and composition of continental lithosphere , 1998 .

[105]  D. Green,et al.  The Earth's Mantle: Pyrolite: A Ringwood Concept and Its Current Expression , 1998 .

[106]  Douglas J. Smith,et al.  Petrology of the Green Knobs diatreme and implications for the upper mantle below the Colorado Plateau , 1976 .

[107]  E. Ivins Transient creep of a composite lower crust: 2. A polymineralic basis for rapidly evolving postseismic deformation modes , 1996 .

[108]  M. Paterson,et al.  Rheology of synthetic olivine aggregates: Influence of grain size and water , 1986 .

[109]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[110]  D. Clague,et al.  Volatiles in Basaltic Glasses from Loihi Seamount, Hawaii: Evidence for a Relatively Dry Plume Component , 2001 .

[111]  W. C. Hunter,et al.  Garnet peridotite from Colorado Plateau ultramafic diatremes: Hydrates, carbonates, and comparative geothermometry , 1981 .

[112]  S. Lee,et al.  Thermal structure of the North American uppermost mantle inferred from seismic tomography , 2002 .

[113]  Robert B. Smith,et al.  Dynamic elevation of the Cordillera , 2000 .

[114]  T. Mizukami,et al.  Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum , 2004, Nature.

[115]  A. Sobolev,et al.  H2O CONCENTRATIONS IN PRIMARY MELTS FROM SUPRA-SUBDUCTION ZONES AND MID-OCEAN RIDGES : IMPLICATIONS FOR H2O STORAGE AND RECYCLING IN THE MANTLE , 1996 .

[116]  Donald L. Turcotte,et al.  Geodynamics : applications of continuum physics to geological problems , 1982 .

[117]  C. Langmuir,et al.  A hydrous melting and fractionation model for mid‐ocean ridge basalts: Application to the Mid‐Atlantic Ridge near the Azores , 2004 .

[118]  E. Humphreys,et al.  Western U.S. upper mantle structure , 1994 .

[119]  D. Kohlstedt,et al.  Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime , 2000 .

[120]  I. Carmichael,et al.  Mega-xenocrysts in alkali olivine basalts; fragments of disrupted mantle assemblages , 1993 .

[121]  W. Snyder,et al.  Geometry of Subducted Slabs Related to San Andreas Transform , 1979, The Journal of Geology.

[122]  S. Matsuo,et al.  Hydrogen isotope composition of deep-seated water , 1977 .

[123]  G. Rossman,et al.  Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals , 1992, Science.

[124]  G. Layne,et al.  H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes , 1993 .

[125]  D. Clague,et al.  Volatiles in Alkalic Basalts form the North Arch Volcanic Field, Hawaii: Extensive Degassing of Deep Submarine-erupted Alkalic Series Lavas , 1997 .

[126]  P. Michael The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metasomatism , 1988 .

[127]  A. Gnrconv,et al.  Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: Evidence from stable isotopes and hydroxyl in garnet , 1995 .

[128]  P. Michael Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O , 1995 .

[129]  K. Lambeck,et al.  Mantle dynamics, postglacial rebound and the radial viscosity profile , 2000 .

[130]  G. Rossman,et al.  Incorporation of hydroxyl in upper-mantle clinopyroxenes , 1991, Nature.

[131]  B. Bills,et al.  Viscosity estimates for the crust and upper mantle from patterns of lacustrine shoreline deformation in the Eastern Great Basin , 1994 .

[132]  C. Langmuir,et al.  Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle , 2002, Nature.

[133]  H. Staudigel,et al.  Ultrafast subduction: the key to slab recycling efficiency and mantle differentiation? , 1992 .