Performance evaluation of a polymer electrolyte fuel cell with a dead-end anode: A computational flu

Abstract The operation of polymer electrolyte fuel cell (PEFC) with a dead-end anode requires careful gas and water management to achieve optimal operating performance. The amount of water accumulated in the anode and nitrogen crossover are particularly important factors. To ascertain (i) the behavior of a PEFC with a dead-end anode, (ii) the accumulation of water and nitrogen in the anode cell with time, and (iii) efficient purging strategies to manage the gas and water, a transient PEFC model with a dead-end anode was developed and analyzed. The model assumes a two-phase flow and solves the governing equations of conservation of mass, momentum, species, energy, charge, coupled with a phenomenological membrane model and agglomerate model for catalyst layer. The model results indicate that water and nitrogen can accumulate in the anode region with time, such that the amount of available hydrogen decreases and hence the cell performance drops. The accumulation rate is found to be closely linked to the current that is drawn from the cell. Further, it is found that to alleviate the problem of build-up of nitrogen and water, the purge frequency and duration of the purge play important roles in affecting cell performance. The transient behavior and impact of the relevant operating conditions obtained from the simulation results can be used for development of efficient purging strategies.

[1]  Biao Zhou,et al.  A generalized numerical model for liquid water in a proton exchange membrane fuel cell with interdigitated design , 2009 .

[2]  Chaoyang Wang,et al.  Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells , 2004 .

[3]  A. S. Mujumdar,et al.  Computational study of forced air-convection in open-cathode polymer electrolyte fuel cell stacks , 2010 .

[4]  S. Kocha,et al.  Characterization of gas crossover and its implications in PEM fuel cells , 2006 .

[5]  Z. H. Wang,et al.  Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells , 2000 .

[6]  Biao Zhou,et al.  A general model of proton exchange membrane fuel cell , 2008 .

[7]  Tianshou Zhao,et al.  A two-dimensional, two-phase mass transport model for liquid-feed DMFCs , 2007 .

[8]  D. H. Schwarz,et al.  3D Modeling of Catalyst Layers in PEM Fuel Cells Effects of Transport Limitations , 2007 .

[9]  Michael Vynnycky,et al.  Analysis of a Two-Phase Non-Isothermal Model for a PEFC , 2005 .

[10]  Afzal Suleman,et al.  Multi-variable optimization of PEMFC cathodes using an agglomerate model , 2007 .

[11]  Chao-Yang Wang,et al.  Transient analysis of polymer electrolyte fuel cells , 2005 .

[12]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[13]  Denise A. McKay,et al.  Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode , 2008 .

[14]  Sarit K. Das,et al.  Heat and Mass Transport in Proton Exchange Membrane Fuel Cells—A Review , 2009 .

[15]  Hyunchul Ju,et al.  Experimental Validation of a PEM Fuel Cell Model by Current Distribution Data , 2004 .

[16]  Chao-Yang Wang,et al.  Fundamental models for fuel cell engineering. , 2004, Chemical reviews.

[17]  Yann Bultel,et al.  Monodimensional modeling and experimental study of the dynamic behavior of proton exchange membrane fuel cell stack operating in dead-end mode , 2007 .

[18]  T. Nguyen,et al.  Modeling Liquid Water Effects in the Gas Diffusion and Catalyst Layers of the Cathode of a PEM Fuel Cell , 2004 .

[19]  J. Weidner,et al.  Diffusion of water in Nafion 115 membranes , 2000 .

[20]  Olli Himanen,et al.  Operation of a planar free-breathing PEMFC in a dead-end mode , 2007 .

[21]  A.G. Stefanopoulou,et al.  Modeling and validation of fuel cell water dynamics using neutron imaging , 2008, 2008 American Control Conference.

[22]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[23]  Bosung Kim,et al.  An experimental study on water transport through the membrane of a PEFC operating in the dead-end mode , 2009 .

[24]  M. Péra,et al.  PEFC Stack Operating in Anodic Dead End Mode , 2004 .

[25]  Hyunchul Ju,et al.  A single-phase, non-isothermal model for PEM fuel cells , 2005 .

[26]  Raghunathan Rengaswamy,et al.  A two-dimensional steady state model including the effect of liquid water for a PEM fuel cell cathode , 2007 .

[27]  S. D. Fraser,et al.  Polarization study of a PEMFC with four reference electrodes at hydrogen starvation conditions , 2008 .

[28]  Matti Noponen,et al.  Current distribution measurements in a PEFC with net flow geometry , 2004 .

[29]  Shaoping Li,et al.  A Three Dimensional CFD Model for PEMFC , 2004 .

[30]  Atilla Biyikoglu,et al.  Review of proton exchange membrane fuel cell models , 2005 .

[31]  Jon G. Pharoah,et al.  A comparison of different approaches to modelling the PEMFC catalyst layer , 2008 .

[32]  Xiaoping Wang,et al.  Buildup of nitrogen in direct hydrogen polymer-electrolyte fuel cell stacks. , 2007 .

[33]  Jon G. Pharoah,et al.  On effective transport coefficients in PEM fuel cell electrodes: Anisotropy of the porous transport layers , 2006 .

[34]  Ned Djilali,et al.  Transport Phenomena in Polymer Electrolyte Membranes , 2005 .

[35]  Signe Kjelstrup,et al.  Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell , 2004 .

[36]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[37]  Michael Vynnycky,et al.  A quantitative study of the effect of flow-distributor geometry in the cathode of a PEM fuel cell , 2006 .

[38]  Norman Munroe,et al.  Review and comparison of approaches to proton exchange membrane fuel cell modeling , 2005 .

[39]  Anna G. Stefanopoulou,et al.  Parameterization and prediction of temporal fuel cell voltage behavior during flooding and drying conditions , 2008 .

[40]  Arun S. Mujumdar,et al.  Numerical Investigation of Liquid Water Cooling for a Proton Exchange Membrane Fuel Cell Stack , 2011 .

[41]  Anna G. Stefanopoulou,et al.  Correlating Nitrogen Accumulation With Temporal Fuel Cell Performance , 2010 .

[42]  Hyunchul Ju,et al.  Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation , 2005 .

[43]  Xianguo Li,et al.  A general formulation for a mathematical PEM fuel cell model , 2005 .

[44]  A. Weber,et al.  Modeling transport in polymer-electrolyte fuel cells. , 2004, Chemical reviews.

[45]  Brant A. Peppley,et al.  A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells , 2004 .

[46]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[47]  Jason B. Siegel,et al.  Nitrogen Front Evolution in Purged Polymer Electrolyte Membrane Fuel Cell with Dead-Ended Anode , 2010 .

[48]  C. Siegel Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells , 2008 .

[49]  Ned Djilali,et al.  THREE-DIMENSIONAL COMPUTATIONAL ANALYSIS OF TRANSPORT PHENOMENA IN A PEM FUEL CELL , 2002 .

[50]  Zhigang Shao,et al.  The critical pressure drop for the purge process in the anode of a fuel cell , 2009 .

[51]  Ying Wang,et al.  The dynamic behavior of pressure during purge process in the anode of a PEM fuel cell , 2006 .

[52]  Michael Vynnycky,et al.  A Two‐Phase Non‐Isothermal PEFC Model: Theory and Validation , 2004 .

[53]  G. Lindbergh,et al.  Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode I. Mathematical Model , 2002 .