An O(n3log⁡log⁡n/log2⁡n) time algorithm for all pairs shortest paths

[1]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[2]  Michael L. Fredman,et al.  New Bounds on the Complexity of the Shortest Path Problem , 1976, SIAM J. Comput..

[3]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[4]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[5]  W. Dobosiewicz A more efficient algorithm for the min-plus multiplication , 1990 .

[6]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[7]  Tadao Takaoka,et al.  A New Upper Bound on the Complexity of the All Pairs Shortest Path Problem , 1991, Inf. Process. Lett..

[8]  Raimund Seidel,et al.  On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs , 1995, J. Comput. Syst. Sci..

[9]  Zvi Galil,et al.  All Pairs Shortest Distances for Graphs with Small Integer Length Edges , 1997, Inf. Comput..

[10]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.

[11]  Seth Pettie,et al.  A Faster All-Pairs Shortest Path Algorithm for Real-Weighted Sparse Graphs , 2002, ICALP.

[12]  Uri Zwick,et al.  All pairs shortest paths using bridging sets and rectangular matrix multiplication , 2000, JACM.

[13]  Yijie Han,et al.  Improved algorithm for all pairs shortest paths , 2004, Inf. Process. Lett..

[14]  Uri Zwick,et al.  A Slightly Improved Sub-Cubic Algorithm for the All Pairs Shortest Paths Problem with Real Edge Lengths , 2004, ISAAC.

[15]  Raphael Yuster,et al.  Answering distance queries in directed graphs using fast matrix multiplication , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[16]  Seth Pettie,et al.  A Shortest Path Algorithm for Real-Weighted Undirected Graphs , 2005, SIAM J. Comput..

[17]  Timothy M. Chan All-Pairs Shortest Paths with Real Weights in O(n3/log n) Time , 2005, WADS.

[18]  Tadao Takaoka An O(n3loglogn/logn) time algorithm for the all-pairs shortest path problem , 2005, Inf. Process. Lett..

[19]  Piotr Sankowski,et al.  Shortest Paths in Matrix Multiplication Time , 2005, ESA.

[20]  Yijie Han,et al.  An O(n3(log log n/log n)5/4) Time Algorithm for All Pairs Shortest Path , 2008, Algorithmica.

[21]  Timothy M. Chan More algorithms for all-pairs shortest paths in weighted graphs , 2007, STOC '07.

[22]  Yijie Han A note of an O(n3/logn) time algorithm for all pairs shortest paths , 2008, Inf. Process. Lett..

[23]  Nikhil Bansal,et al.  Regularity Lemmas and Combinatorial Algorithms , 2009, FOCS.

[24]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[25]  Yijie Han,et al.  An O(n 3 loglogn/log2 n) Time Algorithm for All Pairs Shortest Paths , 2012, SWAT.

[26]  Ryan Williams,et al.  Faster all-pairs shortest paths via circuit complexity , 2013, STOC.

[27]  Timothy M. Chan Speeding up the Four Russians Algorithm by About One More Logarithmic Factor , 2015, SODA.

[28]  Huacheng Yu,et al.  An Improved Combinatorial Algorithm for Boolean Matrix Multiplication , 2015, ICALP.

[29]  Timothy M. Chan,et al.  Deterministic APSP, Orthogonal Vectors, and More: Quickly Derandomizing Razborov-Smolensky , 2016, SODA.