A self-singularity-capturing scheme for fractional differential equations

We develop a two-stage computational framework for robust and accurate time-integration of multi-term linear/nonlinear fractional differential equations. In the first stage, we formulate a self-singularity-capturing scheme, given available/observable data for diminutive time, experimentally obtained or sampled from an approximate numerical solution utilizing a fine grid nearby the initial time. The fractional differential equation provides the necessary knowledge/insight on how the hidden singularity can bridge between the initial and the subsequent short-time solution data. In the second stage, we utilize the multi-singular behaviour of solution in a variety of numerical methods, without resorting to making any ad-hoc/uneducated guesses for the solution singularities. Particularly, we employed an implicit finite-difference method, where the captured singularities, in the first stage, are taken into account through some Lubich-like correction terms, leading to an accuracy of order . We show that this novel framework can control the error even in the presence of strong multi-singularities.

[1]  C. Lubich Discretized fractional calculus , 1986 .

[2]  Wen Chen,et al.  A new visco–elasto-plastic model via time–space fractional derivative , 2018 .

[3]  An Improved Formulation of Singular Boundary Method , 2012 .

[4]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[5]  Mark M. Meerschaert,et al.  A Unified Spectral Method for FPDEs with Two-sided Derivatives; Stability, and Error Analysis , 2019, J. Comput. Phys..

[6]  Mohsen Zayernouri,et al.  A Fractional Subgrid-scale Model for Turbulent Flows: Theoretical Formulation and a Priori Study , 2019, Physics of Fluids.

[7]  N. Ford,et al.  Pitfalls in fast numerical solvers for fractional differential equations , 2006 .

[8]  G. Karniadakis,et al.  Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions☆ , 2017, 1701.00996.

[9]  George E. Karniadakis,et al.  A Petrov-Galerkin Spectral Method of Linear Complexity for Fractional Multiterm ODEs on the Half Line , 2017, SIAM J. Sci. Comput..

[10]  Richard L. Magin,et al.  Using spectral and cumulative spectral entropy to classify anomalous diffusion in Sephadex™ gels , 2017, Comput. Math. Appl..

[11]  Maryam Naghibolhosseini,et al.  Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear , 2015 .

[12]  Marco L. Bittencourt,et al.  Construction of minimum energy high-order Helmholtz bases for structured elements , 2016, J. Comput. Phys..

[13]  Ian W. Turner,et al.  A Stable Fast Time-Stepping Method for Fractional Integral and Derivative Operators , 2017, J. Sci. Comput..

[14]  Marco Lúcio Bittencourt,et al.  Application of the hp-FEM for Hyperelastic Problems with Isotropic Damage , 2016 .

[15]  Chuanju Xu,et al.  A fractional spectral method with applications to some singular problems , 2016, Adv. Comput. Math..

[16]  Mohsen Zayernouri,et al.  Fractional Sensitivity Equation Method: Application to Fractional Model Construction , 2018, Journal of Scientific Computing.

[17]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[18]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[19]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[20]  C. Lubich,et al.  On the Stability of Linear Multistep Methods for Volterra Convolution Equations , 1983 .

[21]  Paris Perdikaris,et al.  Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms , 2016, J. Comput. Phys..

[22]  HongGuang Sun,et al.  A review of applications of fractional calculus in Earth system dynamics , 2017 .

[23]  Jing-Rebecca Li,et al.  A Fast Time Stepping Method for Evaluating Fractional Integrals , 2009, SIAM J. Sci. Comput..

[24]  G. Karniadakis,et al.  Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models , 2013, Annals of Biomedical Engineering.

[25]  Christian Lubich,et al.  Fast Convolution for Nonreflecting Boundary Conditions , 2002, SIAM J. Sci. Comput..

[26]  Glenis R. Long,et al.  Fractional-order modelling and simulation of human ear , 2018, Int. J. Comput. Math..

[27]  M. Meerschaert,et al.  An integrated sensitivity‐uncertainty quantification framework for stochastic phase‐field modeling of material damage , 2020, International Journal for Numerical Methods in Engineering.

[28]  Mark M. Meerschaert,et al.  A Unified Spectral Method for FPDEs with Two-sided Derivatives; A Fast Solver , 2017, J. Comput. Phys..

[29]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[30]  Zhi-Zhong Sun,et al.  A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..

[31]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[32]  Ben Fabry,et al.  Fractional Derivatives Embody Essential Features of Cell Rheological Behavior , 2003, Annals of Biomedical Engineering.

[33]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[34]  Damian Craiem,et al.  Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries , 2008, Physics in medicine and biology.

[35]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[36]  Shahrokh Esmaeili,et al.  Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials , 2011, Comput. Math. Appl..

[37]  George E. Karniadakis,et al.  Fractional spectral collocation methods for linear and nonlinear variable order FPDEs , 2015, J. Comput. Phys..

[38]  G. McKinley,et al.  Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  Chengjian Zhang,et al.  Implicit-explicit time integration of nonlinear fractional differential equations , 2020 .

[40]  George Em Karniadakis,et al.  A Petrov–Galerkin spectral element method for fractional elliptic problems , 2016, 1610.08608.

[41]  Ralf Hiptmair,et al.  Non-Reflecting Boundary Conditions for Maxwell’s Equations , 2003, Computing.

[42]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[43]  MOHSEN ZAYERNOURI,et al.  Spectral and Discontinuous Spectral Element Methods for Fractional Delay Equations , 2014, SIAM J. Sci. Comput..

[44]  Hong Wang,et al.  A divide-and-conquer fast finite difference method for space-time fractional partial differential equation , 2017, Comput. Math. Appl..

[45]  Gareth H. McKinley,et al.  A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids , 2014 .

[46]  Zhongqiang Zhang,et al.  A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations , 2015, SIAM J. Sci. Comput..

[47]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[48]  Marta D'Elia,et al.  A Thermodynamically Consistent Fractional Visco-Elasto-Plastic Model with Memory-Dependent Damage for Anomalous Materials , 2019, Computer Methods in Applied Mechanics and Engineering.

[49]  George E. Karniadakis,et al.  Petrov-Galerkin and Spectral Collocation Methods for Distributed Order Differential Equations , 2016, SIAM J. Sci. Comput..

[50]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[51]  Nobumasa Sugimoto Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves , 1991, Journal of Fluid Mechanics.

[52]  LubichChristian,et al.  Fast Convolution for Nonreflecting Boundary Conditions , 2002 .

[53]  George Em Karniadakis,et al.  Fractional-order uniaxial visco-elasto-plastic models for structural analysis , 2016 .

[54]  Cornelis W. Oosterlee,et al.  The COS method for option valuation under the SABR dynamics , 2018, Int. J. Comput. Math..

[55]  Mohsen Zayernouri,et al.  Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system , 2016, J. Comput. Phys..

[56]  Luigi Rodino,et al.  Existence and Uniqueness for a Nonlinear Fractional Differential Equation , 1996 .

[57]  Christian Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..

[58]  R. Magin,et al.  Fractional calculus in viscoelasticity: An experimental study , 2010 .

[59]  Martin Stoll,et al.  Low-Rank Solvers for Fractional Differential Equations , 2016 .

[60]  Daniel Baffet,et al.  A Kernel Compression Scheme for Fractional Differential Equations , 2017, SIAM J. Numer. Anal..

[61]  Mohsen Zayernouri,et al.  Fractional pseudo-spectral methods for distributed-order fractional PDEs , 2018, Int. J. Comput. Math..

[62]  George E. Karniadakis,et al.  Exponentially accurate spectral and spectral element methods for fractional ODEs , 2014, J. Comput. Phys..