Interference effects of the superconducting pairing wavefunction due to the Fulde–Ferrell–Larkin–Ovchinnikov like state in ferromagnet/superconductor bilayers

The theoretical description of the Fulde–Ferrell–Larkin–Ovchinnikov like state establishing in nanostructured bilayers of ferromagnetic (F) and superconducting (S) material leads to critical temperature oscillations and reentrant superconductivity as the F layer thickness gradually increases. The experimental realization of these phenomena is an important prerequisite for the fabrication of the ferromagnet/superconductor/ferromagnet core structure of the superconducting spin-valve. A switching of the spin-valve is only expected if such non-monotonic critical temperature behavior is observed in F/S bilayers as well as in the S/F bilayers, a combination of which the spin-valve core structure can be regarded to consist of. In our former investigations we could demonstrate the required non-monotonic behavior of the critical temperature in S/F bilayers. In this study we succeeded in the preparation of F/S bilayers, where the superconducting material is now grown on top of the ferromagnetic metal, which shows deep critical temperature oscillations as a function of the ferromagnetic layer thickness as well as an extinction and recovery, i.e. a reentrant behavior, of superconductivity. In particular, the latter is necessary to obtain a spin-valve with a large critical temperature shift between the parallel and antiparallel configurations of magnetizations in the F layers.

[1]  O. Schmidt,et al.  Manifestation of new interference effects in a superconductor-ferromagnet spin valve. , 2011, Physical review letters.

[2]  J. Wosnitza,et al.  Magnetic torque evidence for the Fulde-Ferrell-Larkin-Ovchinnikov state in the layered organic superconductor κ−(BEDT−TTF) 2 Cu(NCS) 2 , 2010, 1008.3747.

[3]  K. Samwer,et al.  Superconductive spin-valve effect in CoFeHf/Pb/CoFeHf layered structures , 2010 .

[4]  O. Schmidt,et al.  Full spin switch effect for the superconducting current in a superconductor/ferromagnet thin film heterostructure , 2010, 1007.2511.

[5]  V. V. Ryazanov,et al.  Implementation of superconductor/ferromagnet/ superconductor [pi]-shifters in superconducting digital and quantum circuits , 2010, 1005.1581.

[6]  Alexander B. Zorin,et al.  A single flux quantum circuit with a ferromagnet-based Josephson π-junction , 2010 .

[7]  I. Krivorotov,et al.  Angular dependence of the superconducting transition temperature in ferromagnet-superconductor-ferromagnet trilayers. , 2010, Physical review letters.

[8]  L. Tagirov,et al.  Superconducting triplet spin valve , 2010, 1002.2113.

[9]  V. Zdravkov,et al.  Extinction and Recovery of Superconductivity by Interference in Superconductor/Ferromagnet Bilayers , 2009 .

[10]  M. Marcellini,et al.  Superconducting spin valves based on epitaxial Fe/V superlattices , 2008 .

[11]  E. Bauer,et al.  Coupled Superconducting and Magnetic Order in CeCoIn5 , 2008, Science.

[12]  V. Zdravkov,et al.  Reentrant superconductivity in superconductor-ferromagnetic-alloy bilayers , 2008, 1109.2757.

[13]  H. Hug,et al.  Spin-polarized current versus stray field in a perpendicularly magnetized superconducting spin switch , 2007 .

[14]  J. Wosnitza,et al.  Calorimetric evidence for a Fulde-Ferrell-Larkin-Ovchinnikov superconducting state in the layered organic superconductor kappa-(BEDT-TTF)2Cu(NCS)2. , 2007, Physical review letters.

[15]  Dong Ho Kim,et al.  Domain stability effect on magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers , 2007 .

[16]  H. Löhneysen,et al.  Superconducting spin switch with perpendicular magnetic anisotropy , 2007 .

[17]  D. Stamopoulos,et al.  Enhancement of superconductivity by exchange bias , 2007, cond-mat/0701271.

[18]  P. Ziemann,et al.  Magnetic switching of the superconducting transition temperature in layered ferromagnetic/superconducting hybrids: Spin switch versus stray field effects , 2006 .

[19]  Jr.,et al.  Observation of standard spin-switch effects in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet , 2006, cond-mat/0608545.

[20]  W. Pratt,et al.  Magnetization-dependent shift in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet. , 2006, Physical review letters.

[21]  S. Habraken,et al.  Inverse spin switch effects in ferromagnet-superconductor-ferromagnet trilayers with strong ferromagnets , 2005, cond-mat/0509156.

[22]  J. Aarts,et al.  The effects of magnetization switching on the superconducting properties of S / F bilayers and F / S / F trilayers , 2006 .

[23]  D. Tikhonov,et al.  Superconducting spin valve effect of a v layer coupled to an antiferromagnetic [Fe/V] superlattice. , 2005, Physical review letters.

[24]  K. Efetov,et al.  Long-range odd triplet superconductivity in superconductor-ferromagnet structures with Néel walls , 2005, cond-mat/0507396.

[25]  K. Efetov,et al.  Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures , 2005, cond-mat/0506047.

[26]  C. Marrows,et al.  Superconductor-ferromagnet CuNi/Nb/CuNi trilayers as superconducting spin-valve core structures , 2005 .

[27]  A. Buzdin,et al.  Proximity effect in superconductor-ferromagnet heterostructures , 2005, cond-mat/0505583.

[28]  I. Lyuksyutov,et al.  Ferromagnet–superconductor hybrids , 2004, cond-mat/0409137.

[29]  M. Yu. Kupriyanov,et al.  The current-phase relation in Josephson junctions , 2004 .

[30]  F. Ronning,et al.  Possible Fulde-Ferrell-Larkin-Ovchinnikov superconducting state in CeCoIn5. , 2003, Physical review letters.

[31]  M. Kupriyanov,et al.  Triplet proximity effect in FSF trilayers , 2003, cond-mat/0303534.

[32]  V. Zdravkov,et al.  Oscillations of the critical temperature in superconducting Nb/Ni bilayers , 2003 .

[33]  J. Pearson,et al.  Magnetization-orientation dependence of the superconducting transition temperature in the ferromagnet-superconductor-ferromagnet system: CuNi/Nb/CuNi. , 2002, Physical review letters.

[34]  J. Aarts,et al.  Coupling of two superconductors through a ferromagnet: evidence for a pi junction. , 2000, Physical review letters.

[35]  J. Aarts,et al.  Coupling of Two Superconductors through a Ferromagnet , 2001 .

[36]  L. Tagirov,et al.  Superconductor'ferromagnet proximity effect in Fe'Pb'Fe trilayers , 2000 .

[37]  A. Buzdin,et al.  Spin-orientation?dependent superconductivity in F/S/F structures , 1999 .

[38]  L. Tagirov LOW-FIELD SUPERCONDUCTING SPIN SWITCH BASED ON A SUPERCONDUCTOR/FERROMAGNET MULTILAYER , 1999 .

[39]  L. Tagirov Proximity effect and superconducting transition temperature in superconductor/ferromagnet sandwiches , 1998 .

[40]  R. Coehoorn,et al.  Interface transparency of superconductor/ferromagnetic multilayers , 1997 .

[41]  M. Beasley,et al.  Superconducting proximity effects in magnetic metals , 1997 .

[42]  Strunk,et al.  Superconductivity in layered Nb/Gd films. , 1994, Physical review. B, Condensed matter.

[43]  Clem,et al.  Upper critical fields of superconductor-ferromagnet multilayers. , 1988, Physical review. B, Condensed matter.

[44]  Lawrence R. Doolittle,et al.  Algorithms for the rapid simulation of Rutherford backscattering spectra , 1985 .

[45]  P. Fulde High field superconductivity in thin films , 1973 .

[46]  H. Schöpf Ch. Kittel, Einführung in die Festkörperphysik. 2. verb. Aufl. 744 S. m. 464 Abb. u. 49 Tab. München/Wien 1969. R. Oldenbourg Verlag. Preis geb. DM 65,– , 1971 .

[47]  Peter Fulde,et al.  Superconductivity in a Strong Spin-Exchange Field , 1964 .