Rotational States of the Hydrogen Molecule in the Crystalline Silicon Matrix

[1]  W. Fowler,et al.  Ortho-para transition of interstitial H2 and D2 in Si , 2009 .

[2]  M. Hiller,et al.  Hydrogen molecules in semiconductors , 2007 .

[3]  M. Hiller,et al.  Ortho-para conversion of interstitial H2 in Si. , 2007, Physical Review Letters.

[4]  E. V. Lavrov,et al.  Raman scattering study of H 2 in Si , 2006 .

[5]  Bartolomeo Civalleri,et al.  CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals , 2005 .

[6]  J. Weber,et al.  Ortho and para interstitial H2 in silicon. , 2002, Physical review letters.

[7]  Peter L. Walters,et al.  Dynamics of interstitial H 2 in crystalline silicon , 2002 .

[8]  P. Ordejón,et al.  The strange behavior of interstitial H2 molecules Si and GaAs , 2001 .

[9]  Young-Gu Jin,et al.  Stability and vibrational modes of H2 and H2∗ complexes in Si , 1999 .

[10]  J. Weber,et al.  Raman Spectroscopy of Hydrogen Molecules in Crystalline Silicon , 1998 .

[11]  M. Kitajima,et al.  Hydrogen molecule trapped in silicon crystal , 1998 .

[12]  B. Hourahine,et al.  Hydrogen molecules in silicon located at interstitial sites and trapped in voids , 1998 .

[13]  C. Walle,et al.  Energetics and vibrational frequencies of interstitial H2 molecules in semiconductors , 1998 .

[14]  Y. Okamoto,et al.  Comparative study of vibrational frequencies of H 2 molecules in Si and GaAs , 1997 .

[15]  S. Estreicher Hydrogen-related defects in crystalline semiconductors: a theorist's perspective , 1995 .

[16]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[17]  S. Pearton,et al.  Hydrogen in crystalline semiconductors , 1992 .

[18]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[19]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[20]  L. C. Snyder,et al.  Atomic and Molecular Hydrogen in the Si Lattice , 1983 .

[21]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[22]  L. Landau Quantum Mechanics-Nonrelativistic Theory , 1958 .