The triple Higgs coupling: a new probe of low-scale seesaw models

A bstractThe measure of the triple Higgs coupling is one of the major goals of the high-luminosity run of the CERN Large Hadron Collider (HL-LHC) as well as the future colliders, either leptonic such as the International Linear Collider (ILC) or hadronic such as the 100 TeV Future Circular Collider in hadron-hadron mode (FCC-hh). We have recently proposed this observable as a test of neutrino mass generating mechanisms in a regime where heavy sterile neutrino masses are hard to be probed otherwise. We present in this article a study of the one-loop corrected triple Higgs coupling in the inverse seesaw model, taking into account all relevant constraints on the model. This is the first study of the impact on the triple Higgs coupling of heavy neutrinos in a realistic, renormalizable neutrino mass model. We obtain deviations from the Standard Model as large as to ∼ +30% that are at the current limit of the HL-LHC sensitivity, but would be clearly visible at the ILC or at the FCC-hh.

[1]  J. Cornwall,et al.  Uniqueness of spontaneously broken gauge theories , 1973 .

[2]  R. Mohapatra,et al.  Mechanism for understanding small neutrino mass in superstring theories. , 1986, Physical review letters.

[3]  Y. J. Kim,et al.  Search for lepton-flavor-violating τ decays into three leptons with 719 million produced τ+τ− pairs , 2010 .

[4]  Z. Maki,et al.  Remarks on the unified model of elementary particles , 1962 .

[5]  J. Valle,et al.  Novel Supersymmetric SO(10) Seesaw Mechanism , 2005 .

[6]  M. Veltman,et al.  One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .

[7]  José W. F. Valle,et al.  Neutrino masses in SU(2) ⊗ U(1) theories , 1980 .

[8]  Left-right symmetry breaking in NJL approach , 1995, hep-ph/9507275.

[9]  K. Nikolopoulos,et al.  Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies , 2016, 1606.09408.

[10]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[11]  M. Venturini,et al.  Search for the lepton flavour violating decay μ+→ e +γ with the full dataset of the MEG experiment: MEG Collaboration , 2016 .

[12]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[13]  J. Cronin Broken Symmetries , 2011 .

[14]  John C. Collins,et al.  JaxoDraw: A graphical user interface for drawing Feynman diagrams. Version 2.0 release notes , 2009, Comput. Phys. Commun..

[15]  B. Aubert,et al.  Searches for Lepton Flavor Violation in the Decays ! e and ! , 2010 .

[16]  B. Pontecorvo,et al.  Mesonium and Antimesonium , 1957 .

[17]  J. Valle,et al.  Neutrino mass and baryon-number nonconservation in superstring models. , 1986, Physical review. D, Particles and fields.

[18]  J W F Valle,et al.  Supersymmetric SO10 seesaw mechanism with low B-L scale. , 2005, Physical review letters.

[19]  C. Grab,et al.  Search for the decay mu+ --> e+e+e- and the measurement of the decay mu+ --> e+e+e- upsiloe upsilomu with the SINDRUM spectrometer , 1985 .

[20]  T. Yanagida,et al.  Horizontal Symmetry and Masses of Neutrinos , 1980 .

[21]  T. Han,et al.  The Search for Heavy Majorana Neutrinos , 2009, 0901.3589.

[22]  M. Mühlleitner,et al.  The measurement of the Higgs self-coupling at the LHC: theoretical status , 2012, 1212.5581.

[23]  T. Schwetz,et al.  Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity , 2016, Journal of High Energy Physics.

[24]  M. Mühlleitner,et al.  Higher order corrections to the trilinear Higgs self-couplings in the real NMSSM , 2013, 1306.3926.

[25]  P. Wells,et al.  Physics Goals and Experimental Challenges of the Proton–Proton High-Luminosity Operation of the LHC , 2016, 1603.09549.

[26]  Higgs pair production at the High Luminosity LHC , 2015 .

[27]  A. Djouadi,et al.  Prospects for Higgs physics at energies up to 100 TeV , 2015, Reports on progress in physics. Physical Society.

[28]  R. Frederix,et al.  Higgs pair production at the LHC with NLO and parton-shower effects , 2014, 1401.7340.

[29]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[30]  Daniele Binosi,et al.  JaxoDraw: A graphical user interface for drawing Feynman diagrams , 2004, Comput. Phys. Commun..

[31]  Vallé,et al.  Dynamical left-right symmetry breaking. , 1995, Physical review. D, Particles and fields.

[32]  G. Senjanovic,et al.  Neutrino Mass and Spontaneous Parity Nonconservation , 1980 .

[33]  A. Pilaftsis,et al.  Flavour-violating charged lepton decays in seesaw-type models , 1994, hep-ph/9403398.

[34]  S. Antusch,et al.  Sterile neutrino searches at future $e^-e^+$, $pp$, and $e^-p$ colliders , 2016, 1612.02728.

[35]  M. Lindner,et al.  Phenomenological consequences of sub-leading terms in see-saw formulas , 2011, 1102.3432.

[36]  S. Antusch,et al.  Testing sterile neutrino extensions of the Standard Model at future lepton colliders , 2015, 1502.05915.

[37]  M. B. Gavela,et al.  Unitarity of the Leptonic Mixing Matrix , 2006, hep-ph/0607020.

[38]  W. Yao,et al.  Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders , 2015, 1506.03302.

[39]  M. Brittain The Family Group , 1949 .

[40]  C. Leroy,et al.  Searches for lepton-flavour violation , 1995 .

[41]  P. W. Cattaneo,et al.  Search for the lepton flavour violating decay μ+→e+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^+ \rightarrow , 2016, The European Physical Journal C.

[42]  R. Contino,et al.  Effective field theory analysis of double Higgs boson production via gluon fusion , 2015 .

[43]  T. Hahn,et al.  News from FormCalc and LoopTools , 2006, hep-ph/0601248.

[44]  P. Ramond The Family Group in Grand Unified Theories , 1979 .

[45]  J. Valle,et al.  Neutrino decay and spontaneous violation of lepton number , 1982 .

[46]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .

[47]  P. Minkowski μ→eγ at a rate of one out of 109 muon decays? , 1977 .

[48]  J. Frost,et al.  Boosting Higgs pair production in the $$b\bar{b}b\bar{b}$$bb¯bb¯ final state with multivariate techniques , 2015, The European physical journal. C, Particles and fields.

[49]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[50]  S. Somalwar,et al.  Search for the decay KL→π0νν , 1992 .

[51]  Julien Baglio,et al.  Heavy neutrino impact on the triple Higgs coupling , 2016, 1603.00879.

[52]  C. Weiland,et al.  Imprints of massive inverse seesaw model neutrinos in lepton flavor violating Higgs boson decays , 2014, 1405.4300.

[53]  T. Hahn,et al.  Automatized One-Loop Calculations in 4 and D dimensions , 1998 .

[54]  G. J. van Oldenborgh,et al.  FF — a package to evaluate one-loop Feynman diagrams , 1991 .

[55]  G. Guralnik,et al.  Global Conservation Laws and Massless Particles , 1964 .

[56]  J. Casas,et al.  Oscillating neutrinos and ? e, ? , 2001, hep-ph/0103065.

[57]  Gerard 't Hooft,et al.  Scalar One Loop Integrals , 1979 .

[58]  C. H. Smith High energy behaviour and gauge symmetry , 1973 .

[59]  T. Hahn,et al.  Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2001 .

[60]  S. Barr New type of seesaw mechanism for neutrino masses. , 2004, Physical review letters.

[61]  P. W. Higgs Broken symmetries, massless particles and gauge fields , 1964 .

[62]  N. Arkani-Hamed,et al.  Physics opportunities of a 100 TeV proton–proton collider , 2015, 1511.06495.

[63]  M. Gell-Mann,et al.  Complex spinors and unified theories , 2013, 1306.4669.

[64]  F. Englert,et al.  Broken Symmetry and the Mass of Gauge Vector Mesons , 1964 .

[65]  A. Pilaftsis Radiatively induced neutrino masses and large Higgs-neutrino couplings in the Standard Model with Majorana fields , 1992, hep-ph/9901206.

[66]  A. Denner Techniques for the Calculation of Electroweak Radiative Corrections at the One‐Loop Level and Results for W‐physics at LEP 200 , 2007, 0709.1075.

[67]  J. Bernabéu,et al.  Lepton flavour non-conservation at high energies in a superstring inspired standard model , 1987 .

[68]  M. Feindt,et al.  Search for lepton-flavor-violating τ decays into three leptons with 719 million produced τ+τ− pairs , 2010, 1001.3221.

[69]  Séamus P. S. Parker,et al.  Search for the decay μ+→e++e−+e+ , 1962 .

[70]  P. S. Bhupal Dev,et al.  Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models , 2012, 1209.4051.

[71]  The Super-Kamiokande Collaboration,et al.  Evidence for oscillation of atmospheric neutrinos , 1998, hep-ex/9807003.