Higher‐order surface treatment for discontinuous Galerkin methods with applications to aerodynamics
暂无分享,去创建一个
A. F. C. Silva | M. A. Ortega | R. C. Moura | R. Moura | M. Ortega | A. S. Silveira | A. E. C. Silva
[1] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[2] Ruben Sevilla,et al. Numerical integration over 2D NURBS-shaped domains with applications to NURBS-enhanced FEM , 2011 .
[3] F. Brezzi,et al. Discontinuous Galerkin approximations for elliptic problems , 2000 .
[4] George Em Karniadakis,et al. The Development of Discontinuous Galerkin Methods , 2000 .
[5] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[6] J. Peraire,et al. Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .
[7] O. Zienkiewicz. The Finite Element Method In Engineering Science , 1971 .
[8] David L. Darmofal,et al. Shock Capturing with Higher-Order, PDE-Based Artificial Viscosity , 2007 .
[9] Antonio Huerta,et al. Comparison of high‐order curved finite elements , 2011 .
[10] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[11] Antony Jameson,et al. Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists , 2011 .
[12] Z. Wang. High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .
[13] G. Karniadakis,et al. Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .
[14] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[15] S. Rebay,et al. High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .
[16] Les A. Piegl,et al. The NURBS book (2nd ed.) , 1997 .
[17] Rainald Löhner,et al. A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids , 2007, J. Comput. Phys..
[18] John A. Ekaterinaris,et al. High-order accurate, low numerical diffusion methods for aerodynamics , 2005 .
[19] William J. Rider,et al. The use of classical Lax–Friedrichs Riemann solvers with discontinuous Galerkin methods , 2001 .
[20] R. Cárdenas. NURBS-Enhanced Finite Element Method (NEFEM) , 2009 .
[21] Antonio Huerta,et al. NURBS‐enhanced finite element method for Euler equations , 2008 .
[22] George Em Karniadakis,et al. Spectral/hp Methods for Viscous Compressible Flows on Unstructured 2D Meshes , 1998 .
[23] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[24] L. Trefethen. Six myths of polynomial interpolation and quadrature , 2011 .
[25] Lilia Krivodonova,et al. High-order accurate implementation of solid wall boundary conditions in curved geometries , 2006 .
[26] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[27] Ralf Hartmann,et al. Discontinuous Galerkin methods for computational aerodynamics — 3D adaptive flow simulation with the DLR PADGE code , 2010 .
[28] Les A. Piegl,et al. On NURBS: A Survey , 2004 .
[29] R. Moura,et al. LYAPUNOV EXPONENTS AND ADAPTIVE MESH REFINEMENT FOR HIGH-SPEED FLOWS , 2013 .