A Hybridized Discontinuous Galerkin Method with Reduced Stabilization

In this paper, we propose a hybridized discontinuous Galerkin (HDG) method with reduced stabilization for the Poisson equation. The reduce stabilization proposed here enables us to use piecewise polynomials of degree $$k$$k and $$k-1$$k-1 for the approximations of element and inter-element unknowns, respectively, unlike the standard HDG methods. We provide the error estimates in the energy and $$L^2$$L2 norms under the chunkiness condition. In the case of $$k=1$$k=1, it can be shown that the proposed method is closely related to the Crouzeix–Raviart nonconforming finite element method. Numerical results are presented to verify the validity of the proposed method.

[1]  Béatrice Rivière,et al.  Sub-optimal Convergence of Non-symmetric Discontinuous Galerkin Methods for Odd Polynomial Approximations , 2009, J. Sci. Comput..

[2]  Fumio Kikuchi,et al.  Discontinuous Galerkin FEM of hybrid type , 2010, JSIAM Lett..

[3]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .

[4]  F. Kikuchi,et al.  Discontinuous Galerkin FEM of hybrid displacement type - development of polygonal elements - , 2009 .

[5]  R. Cools,et al.  Cubature formulae and orthogonal polynomials , 2001 .

[6]  Bernardo Cockburn,et al.  An Analysis of the Embedded Discontinuous Galerkin Method for Second-Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[7]  Pin Tong,et al.  New displacement hybrid finite element models for solid continua , 1970 .

[8]  Ronald Cools,et al.  On the (non)-existence of some cubature formulas: gaps between a theory and its applications , 2003, J. Complex..

[9]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[10]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[11]  T. Pian,et al.  Hybrid and Incompatible Finite Element Methods , 2005 .

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  Issei Oikawa,et al.  Hybridized discontinuous Galerkin method with lifting operator , 2013, JSIAM Lett..

[14]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[15]  P. Knabner,et al.  Numerical Methods for Elliptic and Parabolic Partial Differential Equations , 2003, Texts in Applied Mathematics.

[16]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[17]  Benjamin Stamm,et al.  Local discontinuous Galerkin method for diffusion equations with reduced stabilization , 2009 .

[18]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[19]  F. Kikuchi Rellich-type discrete compactness for some discontinuous Galerkin FEM , 2012, Japan Journal of Industrial and Applied Mathematics.

[20]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[21]  Benjamin Stamm,et al.  Low Order Discontinuous Galerkin Methods for Second Order Elliptic Problems , 2008, SIAM J. Numer. Anal..