Tautological control systems

This paper addresses the problem of feedback invariance in geometric control theory by overviewing a framework that is inherently feedback-invariant. Crucial to the coherence of the method are suitable topologies on spaces of vector fields. The formulation also makes reference to the theory of presheaves and sheaves. While the work is addressed squarely at a fundamental problem of control theory, the technical background for the methods expounded upon are sometimes very complex. For this reason, the intent of the paper is to be expository, rather than technical.

[1]  V. I. Elkin Reduction of nonlinear control systems , 1999 .

[2]  Gianna Stefani,et al.  On the relationship between global and local controllability , 1983, Mathematical systems theory.

[3]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[5]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[6]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[7]  Henry Hermes On local controllability , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[8]  H. Nijmeijer,et al.  Controlled invariance for nonlinear systems , 1982 .

[9]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[10]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[11]  W. M. Wonham,et al.  Linear Multivariable Control , 1979 .

[12]  A. T. Fuller,et al.  Relay control systems optimized for various performance criteria , 1960 .

[13]  Local Controllability along a Reference Trajectory , 1991 .

[14]  Joseph L. Taylor Several Complex Variables with Connections to Algebraic Geometry and Lie Groups , 2002 .

[15]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[16]  V. I. Elkin Reduction of Nonlinear Control Systems: A Differential Geometric Approach , 2012 .

[17]  Needle Variations and Almost Lower Semicontinuous Differential Inclusions , 2002 .

[18]  C. J. Himmelberg,et al.  On measurable relations , 1982 .

[19]  Andrew D. Lewis,et al.  Locally convex topologies and control theory , 2016, Mathematics of Control, Signals, and Systems.

[20]  Pantelis Isaiah,et al.  Feedback stabilisation of locally controllable systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[21]  Henry Hermes,et al.  Local controllability and sufficient conditions in singular problems , 1976 .

[22]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[23]  A. Isidori Nonlinear Control Systems , 1985 .

[24]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[25]  Gerd Behrmann,et al.  IFAC World Congress , 2005 .

[26]  Small-time local controllability of homogeneous systems , 2015 .

[27]  Tim Schmitz,et al.  The Foundations Of Differential Geometry , 2016 .

[28]  M. Kawski The complexity of deciding controllability , 1990 .

[29]  R. Hermann Invariants for feedback equivalence and Cauchy characteristic multifoliations of nonlinear control systems , 1988 .

[30]  Robin Milner,et al.  Control structures , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[31]  Robert B. Gardner,et al.  The Method of Equivalence and Its Applications , 1989 .

[32]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[33]  Andrew D. Lewis,et al.  Time-Varying Vector Fields and Their Flows , 2014 .

[34]  V. Jurdjevic Geometric control theory , 1996 .

[35]  William H. Ruckle,et al.  Nuclear Locally Convex Spaces , 1972 .

[36]  Paulo Tabuada,et al.  Quotients of Fully Nonlinear Control Systems , 2005, SIAM J. Control. Optim..

[37]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[38]  M. Kawski On the problem whether controllability is finitely determined , 2006 .

[39]  Witold Respondek,et al.  Geometry in nonlinear control and differential inclusions , 1995 .

[40]  Arthur J. Krener,et al.  Extended quadratic controller normal form and dynamic state feedback linearization of nonlinear systems , 1992 .

[41]  J. Craggs Applied Mathematical Sciences , 1973 .

[42]  J. Zabczyk Some comments on stabilizability , 1989 .

[43]  R. Gamkrelidze,et al.  THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .

[44]  P. Olver Nonlinear Systems , 2013 .

[45]  Arthur J. Krener,et al.  Normal Forms of Nonlinear Control Systems , 2004 .

[46]  T. Nagano Linear differential systems with singularities and an application to transitive Lie algebras , 1966 .

[47]  Andrew D. Lewis,et al.  Real analytic control systems , 2014, 53rd IEEE Conference on Decision and Control.

[48]  Andrei A. Agrachev,et al.  Local controllability and semigroups of diffeomorphisms , 1993 .

[49]  Gianna Stefani,et al.  Normal local controllability of order one , 1984 .

[50]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[51]  van der Arjan Schaft,et al.  International Symposium on Mathematical Theory of Networks and Systems , 2012 .

[52]  Arjan van der Schaft,et al.  System theoretic descriptions of physical systems , 1983 .

[53]  P. Stefan Accessible Sets, Orbits, and Foliations with Singularities , 1974 .

[54]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[55]  M. Barbero-Liñán,et al.  Geometric Approach to Pontryagin’s Maximum Principle , 2008, 0805.1169.

[56]  H. Sussmann A Sufficient Condition for Local Controllability , 1978 .

[57]  Eduardo Sontag Controllability is harder to decide than accessibility , 1988 .

[58]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[59]  H. Sussmann Orbits of families of vector fields and integrability of distributions , 1973 .

[60]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[61]  J. Mather Stability of C ∞ Mappings: II. Infinitesimal Stability Implies Stability , 1969 .

[62]  Richard Courant,et al.  Wiley Classics Library , 2011 .

[63]  J. Horváth Topological Vector Spaces and Distributions , 2012 .

[64]  P. Michor,et al.  Natural operations in differential geometry , 1993 .

[65]  Harold R. Parks,et al.  A Primer of Real Analytic Functions , 1992 .

[66]  H. Sussmann A general theorem on local controllability , 1987 .

[67]  L. Praly,et al.  Necessary conditions for stability and attractivity of continuous systems , 2003 .

[68]  M. Kawski Controllability via chronological calculus , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[69]  Hans Jarchow,et al.  Locally convex spaces , 1981 .

[70]  H. Hermes HIGH ORDER CONTROLLED STABILITY AND CONTROLLABILITY , 1977 .

[71]  Witold Respondek,et al.  Contact Systems and Corank One Involutive Subdistributions , 2000, math/0004124.

[72]  H. Hermes On Local and Global Controllability , 1974 .

[73]  H. Sussmann Lie Brackets and Local Controllability: A Sufficient Condition for Scalar-Input Systems , 1983 .

[74]  Rosa-Maria Bianchini,et al.  Needle Variations that Cannot be Summed , 2003, SIAM J. Control. Optim..

[75]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[76]  Andrew D. Lewis,et al.  Fundamental problems in geometric control theory , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[77]  Matthias Kawski,et al.  Nonlinear Control and Combinatorics of Words , 1997 .

[78]  R. Godement,et al.  Topologie algébrique et théorie des faisceaux , 1960 .

[79]  J. Coron A necessary condition for feedback stabilization , 1990 .

[80]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[81]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[82]  A. D. Lewis,et al.  Geometric control of mechanical systems : modeling, analysis, and design for simple mechanical control systems , 2005 .

[83]  A. Deitmar,et al.  Strong vector valued integrals , 2011, 1102.1246.

[84]  H. Hermes,et al.  Nonlinear Controllability via Lie Theory , 1970 .

[85]  Christiaan Heij,et al.  Introduction to mathematical systems theory , 1997 .

[86]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .

[87]  Andrei A. Agrachev,et al.  Is it possible to recognize local controllability in a finite number of differentiations , 1999 .

[88]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[89]  Gianna Stefani,et al.  Controllability along a trajectory: a variational approach , 1993 .

[90]  M. Kawski Control variations with an increasing number of switchings , 1988 .

[91]  B. Jakubczyk,et al.  Geometry of feedback and optimal control , 1998 .

[92]  A. Pietsch,et al.  A. I. Tulcea and C. I. Tulcea, Topics in the Theory of Lifting. (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48). X + 188 S. Berlin/Heidelberg/New York 1969. Springer‐Verlag. Preis geb. DM 36,‐ . , 1970 .

[93]  G. Smirnov Introduction to the Theory of Differential Inclusions , 2002 .

[94]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[95]  Zvisinei Sandi DEFINITION , 1961, A Philosopher Looks at Sport.

[96]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[97]  T. O’Neil Geometric Measure Theory , 2002 .

[98]  L. S. Pontryagin,et al.  General Topology I , 1990 .

[99]  J. K. Hunter,et al.  Measure Theory , 2007 .

[100]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[101]  Raymond O. Wells,et al.  Differential analysis on complex manifolds , 1980 .

[102]  Local controllability of affine distributions , 2010 .

[103]  Jan C. Willems,et al.  Introduction to Mathematical Systems Theory. A Behavioral , 2002 .

[104]  Henry Hermes On Local Controllability , 1982 .

[105]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[106]  D. Saunders The Geometry of Jet Bundles , 1989 .

[107]  Claudio De Persis,et al.  Proceedings of the 41st IEEE Conference on Decision and Control , 2002 .

[108]  M. Claggett,et al.  A Behavioral Approach , 1980 .

[109]  Geometric Aspects of the Maximum Principle and Lifts over a Bundle Map , 2002, math/0212055.

[110]  J. C. P. Bus,et al.  The Lagrange multiplier rule on manifolds and optimal control of nonlinear systems , 1982 .

[111]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[112]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[113]  A. D. Lewis,et al.  Geometric local controllability: second-order conditions , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[114]  Alexandre Grothendieck,et al.  Topological vector spaces , 1973 .

[115]  H. Cartan,et al.  Variétés analytiques réelles et variétés analytiques complexes , 1957 .

[116]  B. Tamm International Federation of Automatic Control , 1992, Concise Encyclopedia of Modelling & Simulation.

[117]  H. Fédérer Geometric Measure Theory , 1969 .

[118]  Colin Murray Parkes Obe Md Dpm FRCPsych,et al.  Seventh International Conference , 2009 .

[119]  Andrew D. Lewis,et al.  Linearisation of tautological control systems , 2016 .

[120]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[121]  Eduardo D. Sontag,et al.  Deterministic Finite Dimensional Systems , 1988 .

[122]  Masaki Kashiwara,et al.  Sheaves on Manifolds , 1990 .

[123]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[124]  W. Szymanowski,et al.  BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .

[125]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[126]  John Horvath Topological Vector Spaces and Distributions, Vol. 1 , 1966 .

[127]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[128]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[129]  S. Semmes Topological Vector Spaces , 2003 .

[130]  High order conditions for local controllability and controlled stability , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[131]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[132]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[133]  B. Wüthrich AN INTERNATIONAL SYMPOSIUM , 1997 .

[134]  J. Basto-Gonçalves,et al.  Second-order conditions for local controllability , 1998 .

[135]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .