A synchronous thermal-mechanical in-situ device for dynamic fracture initiation

[1]  V. Tiwari,et al.  Dynamic Fracture Behaviour of AA7475-T7351 Alloy at Different Strain Rates and Temperatures , 2023, Engineering Fracture Mechanics.

[2]  Haichang Jiang,et al.  Temperature Dependence of Fracture Behavior and Mechanical Properties of AISI 316 Austenitic Stainless Steel , 2022, Metals.

[3]  Shengxin Zhu,et al.  Evolution of local deformation field inside adiabatic shear band of 1018 steel studied using digital image correlation with micro-speckles , 2022, Extreme Mechanics Letters.

[4]  Zebang Zheng,et al.  Fracture prediction for metal sheet deformation under different stress states with uncoupled ductile fracture criteria , 2022, Journal of Manufacturing Processes.

[5]  R. Pała,et al.  Some Microstructural Aspects of Ductile Fracture of Metals , 2021, Materials.

[6]  Yu Wang,et al.  Design and application of a comprehensive experimental system for real imaging-virtual imaging of dynamic caustics. , 2021, Applied optics.

[7]  Yanan Yuan,et al.  Fracture assessments of blunt V-notches using the coherent gradient sensing (CGS) method , 2021 .

[8]  P. Herve,et al.  Development of a dual infrared and visible near-infrared measurement system for the observation of adiabatic shear bands. , 2019, The Review of scientific instruments.

[9]  D. Fang,et al.  Temperature Rise Associated with Adiabatic Shear Band: Causality Clarified. , 2019, Physical review letters.

[10]  A. Needleman,et al.  Effect of inclusion density on ductile fracture toughness and roughness , 2014 .

[11]  X. Yao,et al.  Recent application of caustics on experimental dynamic fracture studies , 2011 .

[12]  H. Tippur Coherent gradient sensing (CGS) method for fracture mechanics: a review , 2010 .

[13]  N. Ranc,et al.  Temperature field measurement in titanium alloy during high strain rate loading—Adiabatic shear bands phenomenon , 2008 .

[14]  A. Rosakis,et al.  Dynamic Fracture Properties of Titanium Alloys , 2006 .

[15]  X. Yao,et al.  Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology , 2005 .

[16]  Ares J. Rosakis,et al.  Dynamic full field measurements of crack tip temperatures , 2001 .

[17]  A. Rosakis,et al.  Million frames per second infrared imaging system , 2000 .

[18]  A. Venkert,et al.  An investigation of dynamic failure in 2.3Ni-1.3Cr-0.17C steel , 2000 .

[19]  D. Rittel Thermomechanical aspects of dynamic crack initiation , 1999 .

[20]  D. Rittel,et al.  A model for the time response of solid-embedded thermocouples , 1999 .

[21]  D Leseur,et al.  Experimental investigations of material models for Ti-6A1-4V and 2024-T3 , 1999 .

[22]  A. Rosakis,et al.  Dynamic Crack Initiation in Ductile Steels , 1998 .

[23]  A. Zehnder,et al.  Measurement of the temperature field induced by dynamic crack growth in Beta-C titanium , 1994 .

[24]  A. Rosakis,et al.  Experimental Measurement of the Temperature Rise Generated During Dynamic Crack Growth in Metals , 1990 .

[25]  Ares J. Rosakis,et al.  Caustics By Reflection And Their Application To Elastic-Plastic And Dynamic Fracture Mechanics , 1988 .

[26]  James W. Dally,et al.  Strain-gage methods for measuring the opening-mode stress-intensity factor,KI , 1987 .

[27]  C. Shih,et al.  Relationships between the J-integral and the crack opening displacement for stationary and extending cracks , 1981 .

[28]  R. Pond,et al.  Inhomogeneous thermal changes in copper during plastic elongation , 1975 .

[29]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[30]  Viggo Tvergaard,et al.  An analysis of ductile rupture in notched bars , 1984 .

[31]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[32]  J. Duffy Temperature Measurements during the Formation of Shear Bands in a Structural Steel , 1984 .