LQ evolution algorithm optimizer for model predictive control at model uncertainty

This paper presents an evolution algorithm as a powerful optimisation technique for tuning Model Based Predictive Control (MBPC) at the implications of different levels of model uncertainties. Although Standard Genetic Algorithms (SGAs) are proven to successfully tune and optimise MBPC parameters when no model mismatch. SGAs are trapped in a local optimum at the price of model uncertainty. The multi-objective evaluation algorithms are capable to incorporate many objective functions that can meet simultaneously robust control design objective functions. These promising techniques are successfully implemented to stabilised MBPC at high model uncertainty.

[1]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[2]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Zainal Ahmad,et al.  MODEL PREDICTIVE CONTROL (MPC) AND ITS CURRENT ISSUES IN CHEMICAL ENGINEERING , 2012 .

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[7]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[9]  Doug Cooper,et al.  A Practical Multiple Model Adaptive Strategy for Multivariable Model Predictive Control , 2003 .

[10]  Sigurd Skogestad,et al.  Limitations of dynamic matrix control , 1995 .

[11]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[12]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[13]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[14]  David Q. Mayne,et al.  Control of Constrained Dynamic Systems , 2001, Eur. J. Control.

[15]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[16]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[17]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .