Direct neural pathways convey distinct visual information to Drosophila mushroom bodies

Previously, we demonstrated that visual and olfactory associative memories of Drosophila share mushroom body (MB) circuits (Vogt et al., 2014). Unlike for odor representation, the MB circuit for visual information has not been characterized. Here, we show that a small subset of MB Kenyon cells (KCs) selectively responds to visual but not olfactory stimulation. The dendrites of these atypical KCs form a ventral accessory calyx (vAC), distinct from the main calyx that receives olfactory input. We identified two types of visual projection neurons (VPNs) directly connecting the optic lobes and the vAC. Strikingly, these VPNs are differentially required for visual memories of color and brightness. The segregation of visual and olfactory domains in the MB allows independent processing of distinct sensory memories and may be a conserved form of sensory representations among insects. DOI: http://dx.doi.org/10.7554/eLife.14009.001

[1]  W. Harris,et al.  Conditioned behavior in Drosophila melanogaster. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Gerald M. Rubin,et al.  Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila , 2015, Neuron.

[3]  Angelique C Paulk,et al.  Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. , 2008, Arthropod structure & development.

[4]  Yoshinori Aso,et al.  Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability , 2012, PLoS genetics.

[5]  A. Guo,et al.  Parallel Pathways for Cross-Modal Memory Retrieval in Drosophila , 2013, The Journal of Neuroscience.

[6]  R. Stocker,et al.  Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. , 1997, Journal of neurobiology.

[7]  S. Tomchik,et al.  Dopaminergic Modulation of cAMP Drives Nonlinear Plasticity across the Drosophila Mushroom Body Lobes , 2014, Current Biology.

[8]  Aike Guo,et al.  Lobula-specific visual projection neurons are involved in perception of motion-defined second-order motion in Drosophila , 2013, Journal of Experimental Biology.

[9]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[10]  Gerald M. Rubin,et al.  A Dopamine-Modulated Neural Circuit Regulating Aversive Taste Memory in Drosophila , 2015, Current Biology.

[11]  F. Diao,et al.  A Hard-Wired Glutamatergic Circuit Pools and Relays UV Signals to Mediate Spectral Preference in Drosophila , 2014, Neuron.

[12]  T. Godenschwege,et al.  Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila , 1996, The Journal of Neuroscience.

[13]  S. Farris,et al.  Evolution and function of the insect mushroom bodies: contributions from comparative and model systems studies , 2015 .

[14]  Kei Ito,et al.  Optic Glomeruli and Their Inputs in Drosophila Share an Organizational Ground Pattern with the Antennal Lobes , 2012, The Journal of Neuroscience.

[15]  T. Wachtler,et al.  Color Discrimination with Broadband Photoreceptors , 2013, Current Biology.

[16]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[17]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[18]  H. Tanimoto,et al.  Appetitive and Aversive Visual Learning in Freely Moving Drosophila , 2009, Front. Behav. Neurosci..

[19]  Glenn C. Turner,et al.  Olfactory representations by Drosophila mushroom body neurons. , 2008, Journal of neurophysiology.

[20]  B. Brembs Mushroom Bodies Regulate Habit Formation in Drosophila , 2009, Current Biology.

[21]  W. Gronenberg,et al.  Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera) , 2002, The Journal of comparative neurology.

[22]  W. Rössler,et al.  Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers , 2014, Proceedings of the Royal Society B: Biological Sciences.

[23]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[24]  Johannes Spaethe,et al.  Age‐related and light‐induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectar‐feeding ant Camponotus rufipes , 2016, Developmental neurobiology.

[25]  G. Rubin,et al.  Shared mushroom body circuits underlie visual and olfactory memories in Drosophila , 2014, eLife.

[26]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[27]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[28]  Robert A. A. Campbell,et al.  Cellular-Resolution Population Imaging Reveals Robust Sparse Coding in the Drosophila Mushroom Body , 2011, The Journal of Neuroscience.

[29]  U. Homberg,et al.  Topographically distinct visual and olfactory inputs to the mushroom body in the Swallowtail butterfly, Papilio xuthus , 2015, The Journal of comparative neurology.

[30]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[31]  Kei Ito,et al.  Neuronal assemblies of the Drosophila mushroom body , 2008, The Journal of comparative neurology.

[32]  Ronald L. Davis,et al.  Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory , 1993, Neuron.

[33]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[34]  P. Klenerman,et al.  Autophagy is a critical regulator of memory CD8+ T cell formation , 2014, eLife.

[35]  S. Benzer,et al.  Neuronal development in the drosophila retina: Monoclonal antibodies as molecular probes , 1984, Cell.

[36]  Giger,et al.  Honeybee vision: analysis of orientation and colour in the lateral, dorsal and ventral fields of view , 1997, The Journal of experimental biology.

[37]  T. Venkatesh Neuronal development in the Drosophila retina. , 1993, Journal of neurobiology.

[38]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[39]  Yoshinori Aso,et al.  The Mushroom Body of Adult Drosophila Characterized by GAL4 Drivers , 2009, Journal of neurogenetics.

[40]  G. Rubin,et al.  A subset of dopamine neurons signals reward for odour memory in Drosophila , 2012, Nature.

[41]  W. Gronenberg,et al.  Morphologic representation of visual and antennal information in the ant brain , 1999, The Journal of comparative neurology.

[42]  Yueqing Peng,et al.  Dopamine-Mushroom Body Circuit Regulates Saliency-Based Decision-Making in Drosophila , 2007, Science.

[43]  N. Strausfeld,et al.  Visual inputs to the mushroom body calyces of the whirligig beetle Dineutus sublineatus: modality switching in an insect. , 2012, The Journal of comparative neurology.

[44]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[45]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[46]  Scott Waddell,et al.  Shocking Revelations and Saccharin Sweetness in the Study of Drosophila Olfactory Memory , 2013, Current Biology.

[47]  Matthias Landgraf,et al.  Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[48]  Raphael Cohn,et al.  Coordinated and Compartmentalized Neuromodulation Shapes Sensory Processing in Drosophila , 2015, Cell.

[49]  Li Liu,et al.  Context generalization in Drosophila visual learning requires the mushroom bodies , 1999, Nature.

[50]  André Fiala,et al.  Localization of the Contacts Between Kenyon Cells and Aminergic Neurons in the Drosophila melanogaster Brain Using SplitGFP Reconstitution , 2013, The Journal of comparative neurology.

[51]  N. Strausfeld,et al.  Genealogical Correspondence of Mushroom Bodies across Invertebrate Phyla , 2015, Current Biology.

[52]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[53]  C. Desplan,et al.  The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic. , 2015, Trends in genetics : TIG.

[54]  Kristin Scott,et al.  Gustatory Learning and Processing in the Drosophila Mushroom Bodies , 2015, The Journal of Neuroscience.

[55]  Zhiyuan Lu,et al.  Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx , 2012, The Journal of comparative neurology.

[56]  M. Dennis,et al.  Developmental neurobiology , 1971, Neurology.

[57]  Gerald M Rubin,et al.  Using translational enhancers to increase transgene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.