PET/PEN blends of industrial interest as barrier materials. Part I. Many-scale molecular modeling of PET/PEN blends

Mesoscale molecular simulations, based on parameters obtained through atomistic molecular dynamics and Monte Carlo calculations, have been used for modeling and predicting the behavior of PET/PEN blends. Different simulations have been performed in order to study and compare pure homopolymer blends with blends characterized by the presence of PET/PEN block copolymers acting as compatibilizer. A many-scale molecular modeling strategy was devised to evaluate PET/PEN blend characteristics, simulate phase segregation in pure PET/PEN blends, and demonstrate the improvement of miscibility due to the presence of the transesterification reaction products. The behavior of distribution densities and order parameters of the compatibilized blends demonstrates that mixing properties improve significantly, in agreement with experimental evidences. Barrier properties such as oxygen diffusivity and permeability have also been evaluated by finite element simulations. Accordingly, many-scale modeling seems to be a successful way to estimate PET/PEN blend properties and behavior upon different concentrations and processing conditions.

[1]  S. Rwei Properties of poly(ethylene terephthalate)/poly(ethylene naphthalate) blends , 1999 .

[2]  A. Kenwright,et al.  Transesterification in poly(ethylene terephthalate) and poly(ethylene naphthalene 2, 6-dicarboxylate) blends; the influence of hydroxyl end groups , 1999 .

[3]  D. V. Krevelen Properties of Polymers , 1990 .

[4]  S. D. Jenkins,et al.  Permeability of N2, Ar, He, O2 and CO2 through biaxially oriented polyester films - dependence on free volume , 2001 .

[5]  K. Schmidt,et al.  Implementing the fast multipole method in three dimensions , 1991 .

[6]  S. Jabarin,et al.  Processing characteristics of PET/PEN blends, part 3: Injection molding and free blow studies , 2003 .

[7]  S. Jabarin,et al.  Transesterification reaction kinetics of poly(ethylene terephthalate/poly(ethylene 2,6‐naphthalate) blends , 2001 .

[8]  Philip J. Cox,et al.  Physical properties of polymers handbook , 1997 .

[9]  Maurizio Fermeglia,et al.  Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy , 2004 .

[10]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[11]  K. Lee,et al.  Phase behavior and structure development in extruded poly(ethylene terephthalate)/poly(ethylene‐2,6‐naphthalate) blend , 2000 .

[12]  T. Kotaka,et al.  Phase separation and homogenization in poly(ethylene naphthalene-2,6-dicarboxylate)/poly(ethylene terephthalate) blends , 1997 .

[13]  O. Manero,et al.  Mechanism and kinetics of transesterification in poly(ethylene terephthalate) and poly(ethylene 2,6-naphthalene dicarboxylate) polymer blends , 2004 .

[14]  O. Park,et al.  The change of the molecular weight of poly(ethylene 2,6-naphthalate) and poly(ethylene terephthalate) blend with reaction time , 1997 .

[15]  Soo-young Park,et al.  Miscibility of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) blends by transesterification , 1996 .

[16]  Natasha Maurits,et al.  The MesoDyn project: software for mesoscale chemical engineering , 1999 .

[17]  Ming-Jing Hwang,et al.  Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules , 1994, J. Comput. Chem..

[18]  U. Suter,et al.  Detailed molecular structure of a vinyl polymer glass , 1985 .

[19]  G. Fredrickson The theory of polymer dynamics , 1996 .

[20]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[21]  Maurizio Fermeglia,et al.  Equation‐of‐state parameters for pure polymers by molecular dynamics simulations , 1999 .

[22]  W. Goddard,et al.  Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions , 1992 .

[23]  Ulrich W. Suter,et al.  Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems , 1994 .

[24]  Jinghong Ma,et al.  Reactive blending of poly(ethylene terephthalate)(pet)/ poly(ethylene 2,6-naphthalate)(pen). I: Effect of mixing conditions on chain structure , 2002 .

[25]  W. Mattice,et al.  Atom-based modeling of amorphous 1,4-cis-polybutadiene , 1992 .

[26]  Maurizio Fermeglia,et al.  Computer-aided simulation of a dendrimer with a protoporphyrinic core as potential, novel hemoprotein mimic. , 2002, Bioorganic & medicinal chemistry.

[27]  Maurizio Fermeglia,et al.  Atomistic molecular dynamics simulations of gas diffusion and solubility in rubbery amorphous hydrocarbon polymers , 2003 .

[28]  S. Jabarin,et al.  Processing characteristics of PET/PEN blends, part 1: Extrusion and transesterification reaction kinetics , 2003 .

[29]  H. Cantow Properties of polymers , 1980 .

[30]  J. Cuculo,et al.  Structure and property studies of poly(ethylene terephthalate)/poly(ethylene-2,6-naphthalate) melt-blended fibres , 1999 .

[31]  J. Fraaije,et al.  Dynamic density functional theory for microphase separation kinetics of block copolymer melts , 1993 .

[32]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[33]  Sang Soon Park,et al.  Relationship between sequence distribution and transesterification of PEN/PET random/block copolyesters , 1999 .

[34]  James M. Jonza,et al.  Polyesters II: A review of phase behavior in binary blends: Amorphous, crystalline, liquid crystalline, and on transreaction , 1989 .

[35]  S. Jabarin,et al.  Structure and morphology of PET/PEN blends , 2001 .

[36]  H. Meirovitch Computer simulation of self-avoiding walks: Testing the scanning method , 1983 .

[37]  Taku Kitade,et al.  Structural development and mechanical properties of polyethylene naphthalate/polyethylene terephthalate blends during uniaxial drawing , 2001 .

[38]  N. Maurits,et al.  The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts , 1997 .

[39]  B. Sauer,et al.  Temperature modulated DSC studies of melting and recrystallization in poly(ethylene-2,6-naphthalene dicarboxylate) (PEN) and blends with poly(ethylene terephthalate) (PET) , 2001 .

[40]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[41]  S. Jabarin,et al.  Glass‐transition and melting behavior of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) blends , 2001 .

[42]  Ming-Jing Hwang,et al.  Derivation of Class II Force Fields. 2. Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules , 1994 .

[43]  H. G. Zachmann,et al.  Studies of miscibility, transesterification and crystallization in blends of poly(ethylene terephthalate) and Poly(ethylene-2,6-naphthalene dicarboxylate) , 1994 .

[44]  Maurizio Fermeglia,et al.  Scaling properties in the molecular structure of three-dimensional, nanosized phenylene-based dendrimers as studied by atomistic molecular dynamics simulations , 2003 .

[45]  Andrei A. Gusev,et al.  Numerical Identification of the Potential of Whisker- and Platelet-Filled Polymers , 2001 .

[46]  A. Tonelli PET versus PEN: what difference can a ring make? , 2002 .

[47]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[48]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[49]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[50]  T. Çagin,et al.  Molecular Modeling of Polycarbonate. 1. Force Field, Static Structure, and Mechanical Properties , 1994 .

[51]  M. Stewart,et al.  Reactive processing of poly(ethylene 2,6-naphthalene dicarboxylate)/poly(ethylene terephthalate) blends , 1993 .

[52]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[53]  M. Guo,et al.  Intermolecular cross-polarization nuclear magnetic resonance studies of the miscibility of poly(ethylene naphthalene dicarboxylate)/poly(ethylene terephthalate) blends , 1993 .

[54]  J. Honeycutt A general simulation method for computing conformational properties of single polymer chains , 1998 .

[55]  A. Hiltner,et al.  Oxygen transport as a solid‐state structure probe for polymeric materials: A review , 2005 .

[56]  W. Mattice,et al.  Persistence length of the Rodlike molecule poly(p-phenylene-trans-benzobisthiazole) revisited again , 1993 .

[57]  A. Kotliar Interchange reactions involving condensation polymers , 1981 .

[58]  M. Kimura,et al.  Blends of poly(butylene terephthalate) and a polyarylate before and after transesterification , 1983 .

[59]  W. Mattice,et al.  Evaluation of the persistence length of the rigid-rod polymers poly(benzobisoxazole) and poly(benzobisthiazole) using molecular-dynamics simulations , 1992 .