Wavelet Bases Adapted to Pseudodifferential Operators
暂无分享,去创建一个
[1] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[2] J. Ortega,et al. Solution of Partial Differential Equations on Vector and Parallel Computers , 1987 .
[3] P. G. Lemari'e,et al. Ondelettes `a localisation exponentielle , 1988 .
[4] G. Battle. A block spin construction of ondelettes Part II: The QFT connection , 1988 .
[5] S. Mallat,et al. A wavelet based space-time adaptive numerical method for partial differential equations , 1990 .
[6] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[7] P. Lemarié-Rieusset. Fonctions à support compact dans les analyses multi-résoIutions , 1991 .
[8] Charles A. Micchelli,et al. Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.
[9] C. Chui,et al. Compactly supported box-spline wavelets , 1992 .
[10] GermanyNumerische Mathematik,et al. Multilevel Preconditioning , 1992 .
[11] Zuowei Shen,et al. Wavelets and pre-wavelets in low dimensions , 1992 .
[12] S. Jaffard. Wavelet methods for fast resolution of elliptic problems , 1992 .
[13] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[14] I. Daubechies,et al. Non-separable bidimensional wavelets bases. , 1993 .
[15] Wolfgang Dahmen,et al. Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..
[16] I. Weinreich,et al. Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .
[17] Wolfgang Dahmen,et al. Wavelet approximation methods for pseudodifferential equations: I Stability and convergence , 1994 .
[18] Stanley Osher,et al. Fast Wavelet Based Algorithms for Linear Evolution Equations , 1994, SIAM J. Sci. Comput..
[19] G. Beylkin. On Wavelet-based Algorithms for Solving Diierential Equations. I Introduction , .