Wavelet Bases Adapted to Pseudodifferential Operators

Abstract This paper is concerned with the numerical treatment of pseudodifferential equations in R 2 , employing wavelet Galerkin methods. We construct wavelet bases adapted to a given pseudodifferential operator in the sense that functions on different refinement levels are orthogonal with respect to a certain bilinear form induced by the operator.

[1]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[2]  J. Ortega,et al.  Solution of Partial Differential Equations on Vector and Parallel Computers , 1987 .

[3]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[4]  G. Battle A block spin construction of ondelettes Part II: The QFT connection , 1988 .

[5]  S. Mallat,et al.  A wavelet based space-time adaptive numerical method for partial differential equations , 1990 .

[6]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[7]  P. Lemarié-Rieusset Fonctions à support compact dans les analyses multi-résoIutions , 1991 .

[8]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[9]  C. Chui,et al.  Compactly supported box-spline wavelets , 1992 .

[10]  GermanyNumerische Mathematik,et al.  Multilevel Preconditioning , 1992 .

[11]  Zuowei Shen,et al.  Wavelets and pre-wavelets in low dimensions , 1992 .

[12]  S. Jaffard Wavelet methods for fast resolution of elliptic problems , 1992 .

[13]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[14]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .

[15]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..

[16]  I. Weinreich,et al.  Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .

[17]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations: I Stability and convergence , 1994 .

[18]  Stanley Osher,et al.  Fast Wavelet Based Algorithms for Linear Evolution Equations , 1994, SIAM J. Sci. Comput..

[19]  G. Beylkin On Wavelet-based Algorithms for Solving Diierential Equations. I Introduction , .