An extension of Lehman's theorem and ideal set functions
暂无分享,去创建一个
[1] Myriam Preissmann,et al. Imperfect and Nonideal Clutters: A Common Approach , 2003, Comb..
[2] Gérard Cornuéjols,et al. Ideal clutters , 2002, Discret. Appl. Math..
[3] Jonathan Wang,et al. A new infinite family of minimally nonideal matrices , 2011, J. Comb. Theory A.
[4] András Sebö,et al. Characterizing Noninteger Polyhedra with 0-1 Constraints , 1998, IPCO.
[5] Paul D. Seymour,et al. On Lehman's Width-Length Characterization , 1990, Polyhedral Combinatorics.
[6] William H. Cunningham,et al. Delta-Matroids, Jump Systems, and Bisubmodular Polyhedra , 1995, SIAM J. Discret. Math..
[7] Manfred W. Padberg,et al. Perfect zero–one matrices , 1974, Math. Program..
[8] Li Feng,et al. The complexity of recognizing linear systems with certain integrality properties , 2008, Math. Program..
[9] F. Bruce Shepherd,et al. Applying Lehman's theorems to packing problems , 1995, Math. Program..
[10] A. Frank. Connections in Combinatorial Optimization , 2011 .
[11] François Margot,et al. A catalog of minimally nonideal matrices , 1998, Math. Methods Oper. Res..
[12] Alfred Lehman,et al. On the width—length inequality , 1979, Math. Program..
[13] Gérard Cornuéjols,et al. Lehman matrices , 2009, J. Comb. Theory, Ser. B.
[14] L. Lovász. A Characterization of Perfect Graphs , 1972 .
[15] P. Seymour,et al. The Strong Perfect Graph Theorem , 2002, math/0212070.
[16] Alfred Lehman,et al. The Width-Length Inequality and Degenerate Projective Planes , 1990, Polyhedral Combinatorics.
[17] Gérard Cornuéjols,et al. Ideal 0, 1 Matrices , 1994, J. Comb. Theory, Ser. B.