Dimensionality Reduction via Regression in Hyperspectral Imagery

This paper introduces a new unsupervised method for dimensionality reduction via regression (DRR). The algorithm belongs to the family of invertible transforms that generalize principal component analysis (PCA) by using curvilinear instead of linear features. DRR identifies the nonlinear features through multivariate regression to ensure the reduction in redundancy between the PCA coefficients, the reduction of the variance of the scores, and the reduction in the reconstruction error. More importantly, unlike other nonlinear dimensionality reduction methods, the invertibility, volume-preservation, and straightforward out-of-sample extension, makes DRR interpretable and easy to apply. The properties of DRR enable learning a more broader class of data manifolds than the recently proposed non-linear principal components analysis (NLPCA) and principal polynomial analysis (PPA). We illustrate the performance of the representation in reducing the dimensionality of remote sensing data. In particular, we tackle two common problems: processing very high dimensional spectral information such as in hyperspectral image sounding data, and dealing with spatial-spectral image patches of multispectral images. Both settings pose collinearity and ill-determination problems. Evaluation of the expressive power of the features is assessed in terms of truncation error, estimating atmospheric variables, and surface land cover classification error. Results show that DRR outperforms linear PCA and recently proposed invertible extensions based on neural networks (NLPCA) and univariate regressions (PPA).

[1]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[2]  Matthew Brand,et al.  Charting a Manifold , 2002, NIPS.

[3]  D. J. Donnell,et al.  Analysis of Additive Dependencies and Concurvities Using Smallest Additive Principal Components , 1994 .

[4]  Martin J. Wainwright,et al.  Divide and Conquer Kernel Ridge Regression , 2013, COLT.

[5]  Geoffrey E. Hinton,et al.  Global Coordination of Local Linear Models , 2001, NIPS.

[6]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[7]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[8]  Jesús Malo,et al.  The Role of Spatial Information in Disentangling the Irradiance–Reflectance–Transmittance Ambiguity , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[10]  J. Malo,et al.  V1 non-linear properties emerge from local-to-global non-linear ICA , 2006, Network.

[11]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[12]  D. Siméoni,et al.  Infrared atmospheric sounding interferometer , 1997 .

[13]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[14]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[15]  Thomas L. Ainsworth,et al.  Improved Manifold Coordinate Representations of Large-Scale Hyperspectral Scenes , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Gerhard Tutz,et al.  Local principal curves , 2005, Stat. Comput..

[17]  Matthias Scholz,et al.  Nonlinear Principal Component Analysis: Neural Network Models and Applications , 2008 .

[18]  William J. Emery,et al.  Classification of Very High Spatial Resolution Imagery Using Mathematical Morphology and Support Vector Machines , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[20]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[21]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[22]  P. Delicado Another Look at Principal Curves and Surfaces , 2001 .

[23]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[24]  J. Eyre,et al.  Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments , 2009 .

[25]  Valero Laparra,et al.  Dimensionality reduction via regression on hyperspectral infrared sounding data , 2014, 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[26]  Juha Karhunen,et al.  Local Linear Independent Component Analysis Based on Clustering , 2000, Int. J. Neural Syst..

[27]  Yee Whye Teh,et al.  Automatic Alignment of Local Representations , 2002, NIPS.

[28]  Thomas L. Ainsworth,et al.  Exploiting manifold geometry in hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[29]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[30]  Valero Laparra,et al.  Kernel-based retrieval of atmospheric profiles from IASI data , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[31]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[32]  Valero Laparra,et al.  Nonlinear data description with Principal Polynomial Analysis , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[33]  William L. Smith,et al.  Vertical Resolution and Accuracy of Atmospheric Infrared Sounding Spectrometers. , 1992 .

[34]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[35]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[36]  Valero Laparra,et al.  Visual aftereffects and sensory nonlinearities from a single statistical framework , 2015, Front. Hum. Neurosci..

[37]  Devis Tuia,et al.  Remote Sensing Image Processing. Synthesis Lectures on Image, Video, and Multimedia Processing. , 2011 .

[38]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[39]  Chein-I. Chang Hyperspectral Data Exploitation: Theory and Applications , 2007 .

[40]  Enrico Magli,et al.  Transform Coding Techniques for Lossy Hyperspectral Data Compression , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Valero Laparra,et al.  Iterative Gaussianization: From ICA to Random Rotations , 2011, IEEE Transactions on Neural Networks.

[42]  IItevor Hattie Principal Curves and Surfaces , 1984 .

[43]  Luis Guanter,et al.  Nonlinear Statistical Retrieval of Atmospheric Profiles From MetOp-IASI and MTG-IRS Infrared Sounding Data , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Valero Laparra,et al.  Nonlinearities and Adaptation of Color Vision from Sequential Principal Curves Analysis , 2016, Neural Computation.

[45]  Paul Honeine,et al.  Preimage Problem in Kernel-Based Machine Learning , 2011, IEEE Signal Processing Magazine.

[46]  Luis Gómez-Chova,et al.  Graph Matching for Adaptation in Remote Sensing , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Carl E. Rasmussen,et al.  Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..

[48]  Jon Atli Benediktsson,et al.  Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods , 2013, IEEE Signal Processing Magazine.

[49]  Kaare Brandt Petersen,et al.  Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods , 2013, IEEE Signal Processing Magazine.

[50]  Luis Guanter,et al.  Nonlinear retrieval of atmospheric profiles from MetOp-IASI and MTG-IRS data , 2010, Remote Sensing.

[51]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[52]  Jochen Einbeck,et al.  Data Compression and Regression through Local Principal Curves and Surfaces , 2010, Int. J. Neural Syst..

[53]  Matthias Scholz,et al.  Validation of Nonlinear PCA , 2012, Neural Processing Letters.

[54]  Ute Beyer,et al.  Remote Sensing And Image Interpretation , 2016 .

[55]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[56]  Nanda Kambhatla,et al.  Dimension Reduction by Local Principal Component Analysis , 1997, Neural Computation.

[57]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[58]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[59]  Valero Laparra,et al.  Principal Polynomial Analysis , 2014, Int. J. Neural Syst..

[60]  Deniz Erdogmus,et al.  Locally Defined Principal Curves and Surfaces , 2011, J. Mach. Learn. Res..

[61]  Ben J. A. Kröse,et al.  Coordinating Principal Component Analyzers , 2002, ICANN.