An operator approach to multipoint Padé approximations

First, an abstract scheme of constructing biorthogonal rational systems related to some interpolation problems is proposed. We also present a modification of the famous step-by-step process of solving the Nevanlinna-Pick problems for Nevanlinna functions. The process in question gives rise to three-term recurrence relations with coefficients depending on the spectral parameter. These relations can be rewritten in the matrix form by means of two Jacobi matrices. As a result, a convergence theorem for multipoint Pade approximants to Nevanlinna functions is proved.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[3]  V. Potapov The multiplicative structure of J-contractive matrix functions , 1960 .

[4]  Daniel Alpay,et al.  Schur Functions, Operator Colligations, and Reproducing Kernel Pontryagin Spaces , 1997 .

[5]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[6]  Alexei S. Zhedanov,et al.  TO THE THEORY OF BIORTHOGONAL RATIONAL FUNCTIONS (New Developments in the Research of Integrable Systems : Continuous, Discrete, Ultra-discrete) , 2003 .

[7]  A. Bultheel,et al.  SCHUR–NEVANLINNA SEQUENCES OF RATIONAL FUNCTIONS , 2007, Proceedings of the Edinburgh Mathematical Society.

[8]  M. G. Kreĭn,et al.  Some questions in the theory of moments , 1962 .

[9]  M. G. Krein,et al.  Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume IIx zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen , 1977 .

[10]  Alexei Zhedanov,et al.  Spectral Transformation Chains and Some New Biorthogonal Rational Functions , 2000 .

[11]  S. Hassi,et al.  Oper. Theory Adv. Appl. , 2006 .

[12]  H. Landau Moments in mathematics , 1987 .

[13]  Adhemar Bultheel,et al.  Orthogonal Rational Functions , 1999, Cambridge monographs on applied and computational mathematics.

[14]  B. Simon The Classical Moment Problem as a Self-Adjoint Finite Difference Operator , 1998, math-ph/9906008.

[15]  Barry Simon,et al.  m-Functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices , 1997 .

[16]  A. Kuijlaars,et al.  Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials , 2002, math/0204155.

[17]  Maxim S. Derevyagin,et al.  On the convergence of Padé approximations for generalized Nevanlinna functions , 2007 .

[18]  Luc Wuytack On Some Aspects of the Rational Interpolation Problem , 1974 .

[19]  R. Bellman,et al.  Proceedings of Symposia in Applied Mathematics. , 1961 .

[20]  Alexei S. Zhedanov,et al.  To the theory of biorthogonal rational functions , 2003 .

[21]  Alphonse P. Magnus Rational interpolation to solutions of Riccati difference equations on elliptic lattices , 2009, J. Comput. Appl. Math..

[22]  A. Zhedanov Padé interpolation table and biorthogonal rational functions , 2005 .

[24]  Mourad E. H. Ismail,et al.  Generalized orthogonality and continued fractions , 1994 .

[25]  Annemarie Luger,et al.  A factorization result for generalized Nevanlinna functions of the classNk , 2000 .

[26]  Alexei Zhedanov Regular Article: Biorthogonal Rational Functions and the Generalized Eigenvalue Problem , 1999 .

[27]  H. Langer,et al.  Solution of a multiple Nevanlinna–Pick problem via orthogonal rational functions , 2004 .

[28]  Tosio Kato Perturbation theory for linear operators , 1966 .

[29]  Tamás Erdélyi,et al.  CHEBYSHEV POLYNOMIALS AND MARKOV-BERNSTEIN TYPE INEQUALITIES FOR RATIONAL SPACES , 1994 .

[30]  B. Beckermann,et al.  QD-Type algorithms for the nonnormal Newton-Padé approximation table , 1996 .

[31]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[32]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .