Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system ✩

Abstract A diffusive predator–prey system with Holling type-II predator functional response subject to Neumann boundary conditions is considered. Hopf and steady state bifurcation analysis are carried out in details. In particular we show the existence of multiple spatially non-homogeneous periodic orbits while the system parameters are all spatially homogeneous. Our results and global bifurcation theory also suggest the existence of loops of spatially non-homogeneous periodic orbits and steady state solutions. These results provide theoretical evidences to the complex spatiotemporal dynamics found by numerical simulation.

[1]  Junjie Wei,et al.  Diffusion-driven instability and bifurcation in the Lengyel-Epstein system , 2008 .

[2]  P. Rabier,et al.  Degree theory forC1 Fredholm mappings of index 0 , 1998 .

[3]  Yuan Lou,et al.  S-Shaped Global Bifurcation Curve and Hopf Bifurcation of Positive Solutions to a Predator–Prey Model , 1998 .

[4]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[5]  C. Huffaker Experimental studies on predation : dispersion factors and predator-prey oscillations , 1958 .

[6]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[7]  Yang Kuang,et al.  Uniqueness of limit cycles in Gause-type models of predator-prey systems , 1988 .

[8]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[9]  Yuan Lou,et al.  Diffusion, Self-Diffusion and Cross-Diffusion , 1996 .

[10]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[11]  P. Hartman Ordinary Differential Equations , 1965 .

[12]  Junping Shi,et al.  On global bifurcation for quasilinear elliptic systems on bounded domains , 2009 .

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  Horst Malchow,et al.  Spatiotemporal Complexity of Plankton and Fish Dynamics , 2002, SIAM Rev..

[15]  S. Levin Population Dynamic Models in Heterogeneous Environments , 1976 .

[16]  P. Ricciardi,et al.  Lyapunov functions for a generalized Gause-type model , 1995 .

[17]  Yihong Du,et al.  Allee effect and bistability in a spatially heterogeneous predator-prey model , 2007 .

[18]  Wonlyul Ko,et al.  Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge , 2006 .

[19]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[20]  Lii-Perng Liou,et al.  Global stability of a predator-prey system , 1988 .

[21]  Wei-Ming Ni,et al.  Large amplitude stationary solutions to a chemotaxis system , 1988 .

[22]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[23]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[24]  Junjie Wei,et al.  Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system , 2009, Appl. Math. Lett..

[25]  Zhang Zhifen,et al.  Proof of the uniqueness theorem of limit cycles of generalized liénard equations , 1986 .

[26]  Hansjörg Kielhöfer,et al.  Bifurcation theory : an introduction with applications to PDEs , 2004 .

[27]  R M May,et al.  Stable Limit Cycles in Prey-Predator Populations , 1973, Science.

[28]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[29]  W. J. Freeman,et al.  Alan Turing: The Chemical Basis of Morphogenesis , 1986 .

[30]  Sze-Bi Hsu,et al.  Relaxation , 2021, Graduate Studies in Mathematics.

[31]  Michael P. Hassell,et al.  Spatial structure and chaos in insect population dynamics , 1991, Nature.

[32]  Kuo-Shung Cheng,et al.  UNIQUENESS OF A LIMIT CYCLE FOR A PREDATOR-PREY SYSTEM* , 1981 .

[33]  Sze-Bi Hsu,et al.  A SURVEY OF CONSTRUCTING LYAPUNOV FUNCTIONS FOR MATHEMATICAL MODELS IN POPULATION BIOLOGY , 2005 .

[34]  Paul Waltman,et al.  Competing Predators , 2007 .

[35]  Yuan Lou,et al.  Qualitative behaviour of positive solutions of a predator—prey model: effects of saturation , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[36]  Robert M. May,et al.  The spatial dynamics of host-parasitoid systems , 1992 .

[37]  Jianhong Wu SYMMETRIC FUNCTIONAL DIFFERENTIAL EQUATIONS AND NEURAL NETWORKS WITH MEMORY , 1998 .

[38]  Michael G. Crandall,et al.  The Hopf Bifurcation Theorem in infinite dimensions , 1977 .

[39]  F. Rothe,et al.  Convergence to Homogeneous Equilibrium State for Generalized Volterra–Lotka Systems with Diffusion , 1979 .

[40]  Yihong Du,et al.  Some Recent Results on Diffusive Predator-prey Models in Spatially Heterogeneous Environment ∗ † , 2005 .

[41]  Paul H. Rabinowitz,et al.  Some global results for nonlinear eigenvalue problems , 1971 .

[42]  Rui Peng,et al.  On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law , 2008 .

[43]  Ping Liu,et al.  Imperfect transcritical and pitchfork bifurcations , 2007 .

[44]  H. I. Freedman Deterministic mathematical models in population ecology , 1982 .

[45]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[46]  Yihong Du,et al.  A diffusive predator–prey model with a protection zone☆ , 2006 .

[47]  D. Hoff,et al.  LARGE TIME BEHAVIOR OF SOLUTIONS OF SYSTEMS OF NONLINEAR REACTION-DIFFUSION EQUATIONS* , 1978 .

[48]  Shigui Ruan,et al.  DIFFUSION‐DRIVEN INSTABILITY IN THE GIERER‐MEINHARDT MODEL OF MORPHOGENESIS , 1998 .

[49]  J. L. Jackson,et al.  Dissipative structure: an explanation and an ecological example. , 1972, Journal of theoretical biology.

[50]  Robert M. May,et al.  Limit Cycles in Predator-Prey Communities , 1972, Science.

[51]  Rui Peng,et al.  Stationary Pattern of a Ratio-Dependent Food Chain Model with Diffusion , 2007, SIAM J. Appl. Math..

[52]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .