Reasoning with Negative Information, II: Hard Negation, Strong Negation and Logic Programs

In the framework of extended logic programming we propose a criterion by which a negation operator can be said to express explicit falsity. We show that a certain system of constructive logic with strong negation, due to Lopez-Escobar (1972) and Almukdad & Nelson (1984), fulfils this criterion, as do several recent systems of logic programming, including that of Gelfond & Lifschitz (1990). We use these facts to infer that, from a logical point of view, the programming systems in question can be viewed as subsystems of constructive logic.

[1]  Michael Gelfond,et al.  Logic Programs with Classical Negation , 1990, ICLP.

[2]  David Burton Elementary Number Theory , 1976 .

[3]  David Nelson,et al.  Constructible falsity and inexact predicates , 1984, Journal of Symbolic Logic.

[4]  Gerd Wagner,et al.  Logic Programming with Strong Negation and Inexact Predicates , 1991, J. Log. Comput..

[5]  Teodor C. Przymusinski Perfect Model Semantics , 1988, ICLP/SLP.

[6]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[7]  Yuri Gurevich,et al.  Intuitionistic logic with strong negation , 1977 .

[8]  Lars Hallnäs,et al.  A Proof-Theoretic Approach to Logic Programming. I. Clauses as Rules , 1990, J. Log. Comput..

[9]  Melvin Fitting,et al.  A Kripke-Kleene Semantics for Logic Programs , 1985, J. Log. Program..

[10]  Leon Sterling,et al.  Pressing for Parallelism: A Prolog Program made Concurrent , 1986, J. Log. Program..

[11]  Dale Miller,et al.  A Logical Analysis of Modules in Logic Programming , 1989, J. Log. Program..

[12]  Gerd Wagner,et al.  Logic Programming with Strong Negation , 1989, ELP.

[13]  Marek J. Sergot,et al.  The British Nationality Act as a logic program , 1986, CACM.

[14]  Seiki Akama On the Proof Method for Constructive Falsity , 1988, Math. Log. Q..

[15]  E. López-Escobar,et al.  Refutability and elementary number theory , 1972 .

[16]  Randy Goebel,et al.  Gracefully adding negation and disjunction to Prolog , 1986, ICLP.

[17]  Franz Kutschera Ein verallgemeinerter Widerlegungsbegriff für Gentzenkalküle , 1969 .

[18]  Hector J. Levesque,et al.  Making Believers out of Computers , 1986, Artif. Intell..