Microsaccadic information sampling provides Drosophila hyperacute vision

Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes’ optical limits.

[1]  Ranu Jung,et al.  Encyclopedia of Computational Neuroscience , 2015, Springer New York.

[2]  Eric J. Warrant,et al.  Neural Image Enhancement Allows Honeybees to See at Night , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  S. Laughlin,et al.  Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding , 2007, PLoS biology.

[4]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: I. Response Dynamics and Signaling Efficiency at 25°C , 2001 .

[5]  Stephen A. Billings,et al.  Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors , 2012, Current Biology.

[6]  Junhai Han,et al.  Phototransduction in Drosophila , 2012, Science China Life Sciences.

[7]  Mikko Vähäsöyrinki,et al.  Robustness of Neural Coding in Drosophila Photoreceptors in the Absence of Slow Delayed Rectifier K+ Channels , 2006, The Journal of Neuroscience.

[8]  Musa H. Asyali,et al.  Use of Meixner functions in estimation of Volterra kernels of nonlinear systems with delay , 2005, IEEE Transactions on Biomedical Engineering.

[9]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[10]  S. Laughlin,et al.  Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system , 2000, Vision Research.

[11]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.

[12]  Dan-Eric Nilsson,et al.  Optics and Evolution of the Compound Eye , 1989 .

[13]  J. V. van Hateren,et al.  Spatiotemporal contrast sensitivity of early vision , 1993, Vision Research.

[14]  S. Laughlin,et al.  Changes in the intensity-response function of an insect's photoreceptors due to light adaptation , 1981, Journal of comparative physiology.

[15]  A S French,et al.  The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities. , 1993, Biophysical journal.

[16]  W. Pak,et al.  Genetic and molecular identification of a Drosophila histidine decarboxylase gene required in photoreceptor transmitter synthesis. , 1993, The EMBO journal.

[17]  W. H. Miller,et al.  Photoreceptor diameter and spacing for highest resolving power. , 1977, Journal of the Optical Society of America.

[18]  Eric J. Warrant,et al.  The Trade-Off Between Resolution and Sensitivity in Compound Eyes , 2018 .

[19]  D. G. Stavenga,et al.  Angular and spectral sensitivity of fly photoreceptors. III. Dependence on the pupil mechanism in the blowfly Calliphora , 2004, Journal of Comparative Physiology A.

[20]  J. V. van Hateren,et al.  Real and optimal neural images in early vision , 1992, Nature.

[21]  G. Laufer Introduction to Optics and Lasers in Engineering , 1996 .

[22]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[23]  M Heisenberg,et al.  Separation of receptor and lamina potentials in the electroretinogram of normal and mutant Drosophila. , 1971, The Journal of experimental biology.

[24]  Gonzalo G. de Polavieja,et al.  The Rate of Information Transfer of Naturalistic Stimulation by Graded Potentials , 2003, The Journal of general physiology.

[25]  A. S. French,et al.  Shaker K+ channels contribute early nonlinear amplification to the light response in Drosophila photoreceptors. , 2003, Journal of neurophysiology.

[26]  Heidi L. Rehm,et al.  TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells , 2004, Nature.

[27]  N. Franceschini,et al.  Electrophysiological analysis of fly retina , 1979, Journal of comparative physiology.

[28]  Gary D. Bernard,et al.  The effect of motion on visual acuity of the compound eye: A theoretical analysis , 1975, Vision Research.

[29]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: II. Rising Temperature Increases the Bandwidth of Reliable Signaling , 2001 .

[30]  R. O. Uusitalo,et al.  Transfer of graded potentials at the photoreceptor-interneuron synapse , 1995, The Journal of general physiology.

[31]  J. H. Hateren,et al.  Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors , 1984, Journal of Comparative Physiology A.

[32]  D. G. Stavenga,et al.  Angular sensitivity of blowfly photoreceptors: broadening by artificial electrical coupling , 1987, Journal of Comparative Physiology A.

[33]  D. G. Stavenga,et al.  On optical crosstalk between fly rhabdomeres , 1975, Biological Cybernetics.

[34]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[35]  S. Laughlin The role of sensory adaptation in the retina. , 1989, The Journal of experimental biology.

[36]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[37]  Thomas Labhart,et al.  Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila , 2012, Current Biology.

[38]  D. Stavenga Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila , 2003, Journal of Comparative Physiology A.

[39]  J. H. van Hateren,et al.  Electrical coupling of neuro-ommatidial photoreceptor cells in the blowfly , 1986, Journal of Comparative Physiology A.

[40]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[41]  S. B. Laughlin,et al.  Sexual dimorphism matches photoreceptor performance to behavioural requirements , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[43]  S. Archer Adaptive Mechanisms in the Ecology of Vision , 1999, Springer Netherlands.

[44]  B. Minke The History of the Prolonged Depolarizing Afterpotential (PDA) and Its Role in Genetic Dissection of Drosophila Phototransduction , 2012, Journal of neurogenetics.

[45]  Eric J. Warrant,et al.  A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis , 2005, Cell and Tissue Research.

[46]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[47]  Alexander Borst,et al.  Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.

[48]  S. Laughlin Retinal information capacity and the function of the pupil , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[49]  David S. Williams,et al.  Rhabdom size and photoreceptor membrane turnover in a muscoid fly , 2004, Cell and Tissue Research.

[50]  A Guo,et al.  Choice Behavior of Drosophila Facing Contradictory Visual Cues , 2001, Science.

[51]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[52]  M. Lappe,et al.  Neuronal latencies and the position of moving objects , 2001, Trends in Neurosciences.

[53]  Roger C. Hardie,et al.  Fly photoreceptors. III. Angular sensitivity as a function of wavelength and the limits of resolution , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[54]  Bart R. H. Geurten,et al.  Saccadic body turns in walking Drosophila , 2014, Front. Behav. Neurosci..

[55]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[56]  E. Brenner,et al.  Motion extrapolation is not responsible for the flash–lag effect , 2000, Vision Research.

[57]  Allan W. Snyder,et al.  Acuity of compound eyes: Physical limitations and design , 2004, Journal of comparative physiology.

[58]  J. H. van Hateren,et al.  Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions , 1984, Journal of Comparative Physiology A.

[59]  Lani F. Wu,et al.  The Evolution and Development of Neural Superposition , 2014, Journal of neurogenetics.

[60]  E. Buchner,et al.  Genetic depletion of histamine from the nervous system of Drosophila eliminates specific visual and mechanosensory behavior , 1996, Journal of Comparative Physiology A.

[61]  M. Juusola,et al.  Intrinsic Activity in the Fly Brain Gates Visual Information during Behavioral Choices , 2010, PloS one.

[62]  R. Hardie,et al.  Single photon responses in Drosophila photoreceptors and their regulation by Ca2+ , 2000, The Journal of physiology.

[63]  Qasim Zaidi,et al.  Neuronal nonlinearity explains greater visual spatial resolution for darks than lights , 2014, Proceedings of the National Academy of Sciences.

[64]  Hendrik Eckert,et al.  Nonlinear dynamic transfer characteristics of cells in the peripheral visual pathway of flies , 2004, Biological Cybernetics.

[65]  S. Shaw Early visual processing in insects. , 1984, The Journal of experimental biology.

[66]  D. O’Carroll,et al.  Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light , 2016, Current Biology.

[67]  Matti Järvilehto,et al.  Lateral inhibition in an insect eye , 1972, Zeitschrift für vergleichende Physiologie.

[68]  Roland Gemperlein,et al.  A study of the response properties of retinula cells of flies using nonlinear identification theory , 1975, Biological Cybernetics.

[69]  Charles P. Ratliff,et al.  Retina is structured to process an excess of darkness in natural scenes , 2010, Proceedings of the National Academy of Sciences.

[70]  Ximena J. Nelson,et al.  Hyperacute motion detection by the lateral eyes of jumping spiders , 2012, Vision Research.

[71]  A. Dubs The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance , 1982, Journal of comparative physiology.

[72]  Dietrich Burkhardt,et al.  Visual field of single retinula cells and interommatidial inclination in the compound eye of the blowfly Calliphora erythrocephala , 1964, Zeitschrift für vergleichende Physiologie.

[73]  M. Korenberg,et al.  Exact orthogonal kernel estimation from finite data records: Extending Wiener's identification of nonlinear systems , 1988, Annals of Biomedical Engineering.

[74]  Dietrich Burkhardt,et al.  On the vision of insects , 2004, Journal of comparative physiology.

[75]  M. Land Motion and vision: why animals move their eyes , 1999, Journal of Comparative Physiology A.

[76]  Reinhard Wolf,et al.  Visual Pattern Recognition in Drosophila Is Invariant for Retinal Position , 2004, Science.

[77]  M. Juusola Linear and non-linear contrast coding in light-adapted blowfly photoreceptors , 1993, Journal of Comparative Physiology A.

[78]  J. H. Hateren,et al.  Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation , 1992, Journal of Comparative Physiology A.

[79]  A S French,et al.  Visual acuity for moving objects in first- and second-order neurons of the fly compound eye. , 1997, Journal of neurophysiology.

[80]  D. Stavenga,et al.  Calcium homeostasis in photoreceptor cells of Drosophila mutants inaC and trp studied with the pupil mechanism , 1996, Visual Neuroscience.

[81]  Zhuoyi Song,et al.  Refractory Sampling Links Efficiency and Costs of Sensory Encoding to Stimulus Statistics , 2014, The Journal of Neuroscience.

[82]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[83]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[84]  D. Nilsson,et al.  Did neural pooling for night vision lead to the evolution of neural superposition eyes? , 1994, Journal of Comparative Physiology A.

[85]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[86]  E. Mazzoni,et al.  Feedback from Rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors , 2011, Nature.

[87]  R. Shapley,et al.  “Black” Responses Dominate Macaque Primary Visual Cortex V1 , 2009, The Journal of Neuroscience.

[88]  G. D. McCann,et al.  Development and application of white-noise modeling techniques for studies of insect visual nervous system , 1973, Kybernetik.

[89]  M. F. LAND,et al.  Head Movement of Flies during Visually Guided Flight , 1973, Nature.

[90]  R. Hardie,et al.  Facets of Vision , 1989, Springer Berlin Heidelberg.

[91]  M. Land Compound eye structure: Matching eye to environment , 1999 .

[92]  Mikko Vähäsöyrinki,et al.  Interactions between light-induced currents, voltage-gated currents, and input signal properties in Drosophila photoreceptors. , 2004, Journal of neurophysiology.

[93]  Eng-Leng Mah,et al.  Photoreceptor processing improves salience facilitating small target detection in cluttered scenes. , 2008, Journal of vision.

[94]  J. Yellott Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing , 1982, Vision Research.

[95]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: II Mechanisms , 2009, PloS one.

[96]  S. Benzer,et al.  Behavioral genetics of thermosensation and hygrosensation in Drosophila. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[97]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[98]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[99]  V. Braitenberg,et al.  A regular net of reciprocal synapses in the visual system of the fly,Musca domestica , 1974, Journal of comparative physiology.

[100]  W. Ribi,et al.  Gap junctions coupling photoreceptor axons in the first optic ganglion of the fly , 1978, Cell and Tissue Research.

[101]  K. Kirschfeld,et al.  Spectral tuning of rhodopsin and metarhodopsin in vivo , 1993, Neuron.

[102]  R. de Figueiredo The Volterra and Wiener theories of nonlinear systems , 1982, Proceedings of the IEEE.

[103]  A S French,et al.  Nonlinear models of the first synapse in the light-adapted fly retina. , 1995, Journal of neurophysiology.

[104]  F. Zettler,et al.  Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[105]  A. Borst,et al.  Central gating of fly optomotor response , 2010, Proceedings of the National Academy of Sciences.

[106]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[107]  Justus Liebig,et al.  Progress in Sensory Physiology , 1981, Progress in Sensory Physiology.

[108]  Anna E Honkanen,et al.  Cockroach optomotor responses below single photon level , 2014, Journal of Experimental Biology.

[109]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[110]  Tingting Wang,et al.  Ih Channels Control Feedback Regulation from Amacrine Cells to Photoreceptors , 2015, PLoS biology.

[111]  Mikko Juusola,et al.  Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands , 2011, Proceedings of the National Academy of Sciences.

[112]  Jonathan D. Victor,et al.  Nonlinear Systems Analysis in Vision: Overview of Kernel Methods , 2018 .

[113]  C. M.,et al.  Role of primary excitation statistics in the generation of antibunched and sub-Poisson light , 1984 .

[114]  Roger C. Hardie,et al.  Phototransduction Biophysics , 2014, Encyclopedia of Computational Neuroscience.

[115]  Mikko Vähäsöyrinki,et al.  The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors , 2003, Nature.

[116]  M Järvilehto,et al.  Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors , 1994, The Journal of general physiology.

[117]  M. Schnitzer,et al.  GABAergic Lateral Interactions Tune the Early Stages of Visual Processing in Drosophila , 2013, Neuron.

[118]  S B Laughlin,et al.  Single photon signals in fly photoreceptors and first order interneurones at behavioral threshold. , 1981, The Journal of physiology.

[119]  Eric J. Warrant,et al.  Arthropod eye design and the physical limits to spatial resolving power , 1993, Progress in Neurobiology.

[120]  Yu Zhou,et al.  Random Photon Absorption Model Elucidates How Early Gain Control in Fly Photoreceptors Arises from Quantal Sampling , 2016, Front. Comput. Neurosci..

[121]  R. Hardie,et al.  The Drosophila SK Channel (dSK) Contributes to Photoreceptor Performance by Mediating Sensitivity Control at the First Visual Network , 2011, The Journal of Neuroscience.

[122]  Roger C. Hardie,et al.  Feedback Network Controls Photoreceptor Output at the Layer of First Visual Synapses in Drosophila , 2006, The Journal of general physiology.

[123]  R. Nijhawan,et al.  Neural delays, visual motion and the flash-lag effect , 2002, Trends in Cognitive Sciences.

[124]  Gonzalo G. de Polavieja,et al.  Network Adaptation Improves Temporal Representation of Naturalistic Stimuli in Drosophila Eye: I Dynamics , 2009, PloS one.

[125]  J. H. van Hateren,et al.  Three modes of spatiotemporal preprocessing by eyes , 1993, Journal of Comparative Physiology A.

[126]  Michael J. Korenberg,et al.  Applications of fast orthogonal search: Time-series analysis and resolution of signals in noise , 2006, Annals of Biomedical Engineering.

[127]  Andreas Klaus,et al.  Optimum spatiotemporal receptive fields for vision in dim light. , 2009, Journal of vision.

[128]  R. Hardie,et al.  Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine , 2016, Front. Neural Circuits.

[129]  S B Laughlin,et al.  Variations in photoreceptor response dynamics across the fly retina. , 2001, Journal of neurophysiology.

[130]  P. Skorupski,et al.  Differences in Photoreceptor Processing Speed for Chromatic and Achromatic Vision in the Bumblebee, Bombus terrestris , 2010, The Journal of Neuroscience.

[131]  E. Warrant Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.

[132]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[133]  Barbara Blakeslee,et al.  The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[134]  M. J. Korenberg,et al.  Two Methods for Calculating the Responses of Photoreceptors to Moving Objects , 1998, Annals of Biomedical Engineering.

[135]  David P. Corey,et al.  Mechanoelectrical transduction by hair cells , 1992, Trends in Neurosciences.

[136]  C. H. G. Wright,et al.  A Multiaperture Bioinspired Sensor With Hyperacuity , 2012, IEEE Sensors Journal.

[137]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[138]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[139]  Martin Wilson,et al.  Angular sensitivity of light and dark adapted locust retinula cells , 1975, Journal of comparative physiology.

[140]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[141]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[142]  Irina Sinakevitch,et al.  Chemical neuroanatomy of the fly's movement detection pathway , 2004, The Journal of comparative neurology.

[143]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[144]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[145]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[146]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[147]  S. Grill,et al.  Photomechanical Responses in Drosophila Photoreceptors , 2012 .

[148]  K. Mimura Receptive field patterns in photoreceptors of the fly , 1981, Journal of comparative physiology.

[149]  Stephen A. Billings,et al.  Data Modelling for Analysis of Adaptive Changes in Fly Photoreceptors , 2009, ICONIP.

[150]  G. Horridge Invertebrate vision , 1980, Nature.

[151]  D. Stavenga Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics , 2002, Journal of Comparative Physiology A.

[152]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[153]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[154]  E. Buchner,et al.  Selective Histamine Uptake Rescues Photo- and Mechanoreceptor Function of Histidine Decarboxylase-Deficient DrosophilaMutant , 1998, The Journal of Neuroscience.

[155]  K. Götz Visual guidance in Drosophila. , 1980, Basic life sciences.

[156]  S. B. Laughlin,et al.  Fast and slow photoreceptors — a comparative study of the functional diversity of coding and conductances in the Diptera , 1993, Journal of Comparative Physiology A.

[157]  U. Tepass,et al.  Adherens junctions in Drosophila retinal morphogenesis. , 2007, Trends in cell biology.

[158]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[159]  Doekele G Stavenga,et al.  Visual acuity of fly photoreceptors in natural conditions - dependence on UV sensitizing pigment and light-controlling pupil , 2004, Journal of Experimental Biology.

[160]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[161]  Ian A. Meinertzhagen,et al.  Wiring Economy and Volume Exclusion Determine Neuronal Placement in the Drosophila Brain , 2011, Current Biology.

[162]  T. J. Wardill,et al.  Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System , 2012, Science.

[163]  T. Horikoshi,et al.  Comparison of stimulus-response (V-log I) functions in five types of lepidopteran compound eyes (46 species) , 2004, Journal of Comparative Physiology A.

[164]  V. Hateren,et al.  Processing of natural time series of intensities in the early visual system of the blowfly , 1997 .

[165]  Simon B Laughlin,et al.  Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies Musca domestica , 2003, Journal of Experimental Biology.

[166]  I. Meinertzhagen,et al.  Direct connections between the R7/8 and R1–6 photoreceptor subsystems in the dipteran visual system , 1989, Cell and Tissue Research.

[167]  Mark A. Frye,et al.  Figure–ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses , 2014, Journal of Experimental Biology.

[168]  S. R. Shaw,et al.  Retinal resistance barriers and electrical lateral inhibition , 1975, Nature.