[M2Q or Something else? The Impact of Varying Case Selection Criteria on the Prevalence Estimation of Chronic Diseases Based on Outpatient Diagnoses in German Claims Data].

BACKGROUND To determine the prevalence of chronic disease conditions based on outpatient health insurance data, we often rely on repeated occurrence of a diagnosis over the course of a year, usually in two or more quarters (M2Q). It remains unclear whether prevalence estimates change after adapting repeated occurrence of a diagnosis in different quarters of a year compared to a single occurrence or to some other case selection criteria. This study applies different case selection criteria and analyses their impact on the prevalence estimation based on outpatient diagnoses. METHODS Administrative prevalence for 2019 was estimated for eight chronic conditions based on outpatient physician diagnoses. We applied five case selection criteria: (1) single occurrence, (2) repeated occurrence (including in the same quarter or treatment case), (3) repeated occurrence in at least two different treatment cases (including in the same quarter), (4) occurrence in two quarters and (5) occurrence in two consecutive quarters. Only information on persons with continuous insurance history within the statutory health insurance provider AOK Niedersachsen in 2019 was used (n=2,168,173). RESULTS Prevalence estimates differed quite strongly depending on the diagnosis and on age group if a criterion with repeated occurrence of a diagnosis was applied compared to a single occurrence. These differences turned out to be higher among men and younger patients. The application of a repeated occurrence (criterion 2) did not show different results compared to the repeated occurrence in at least two treatment cases (criterion 3) or in two quarters (criterion 4). The application of the strict criterion of two consecutive quarters (criterion 5) resulted in further reduction of the prevalence estimates. CONCLUSIONS Repeated occurrence is increasingly becoming the standard for diagnosis validation in health insurance claims data. Applying such criteria results partly in a distinct reduction of prevalence estimates. The definition of the study population (e. g., repeated visits to a physician in two consecutive quarters as a mandatory condition) can also strongly influence the prevalence estimates.

[1]  G. Doblhammer,et al.  Diabetes duration and the risk of dementia: a cohort study based on German health claims data , 2021, Age and ageing.

[2]  S. Geyer,et al.  Völlig unterschiedlich oder doch recht ähnlich? Die soziodemografische Struktur der AOK Niedersachsen im Vergleich zur niedersächsischen und bundesweiten Allgemein- und Erwerbsbevölkerung , 2021, Das Gesundheitswesen.

[3]  N. Mohr,et al.  Prevalence and Medications of Atopic Dermatitis in Germany: Claims Data Analysis , 2021, Clinical epidemiology.

[4]  U. Ziegler,et al.  [Trends in the Prevalence of Dementia and Parkinson's Disease: An Analysis Based on Health Claims Data from all German Statutory Health Insurance Funds for Persons aged 65+in Germany 2009-2012]. , 2019, Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)).

[5]  Z. Katsarava,et al.  Administrative prevalence and incidence, characteristics and prescription patterns of patients with migraine in Germany: a retrospective claims data analysis , 2020, The Journal of Headache and Pain.

[6]  F. Jacobi,et al.  Trends in prevalence of depression in Germany between 2009 and 2017 based on nationwide ambulatory claims data. , 2020, Journal of affective disorders.

[7]  T. Ziese,et al.  [Prevalence and incidence of documented diabetes based on health claims data-reference analysis for diabetes surveillance in Germany]. , 2019 .

[8]  M. Akmatov,et al.  Higher prevalence of heart failure in rural regions: a population-based study covering 87% of German inhabitants , 2019, Clinical Research in Cardiology.

[9]  K. Kuhlmann,et al.  [The Frequency of Depression Diagnoses in Different Groups of Insured Persons - A Routine Data Analysis of the Years 2006 to 2015]. , 2019, Psychotherapie, Psychosomatik, medizinische Psychologie.

[10]  G. Doblhammer,et al.  Parkinson's disease in Germany: prevalence and incidence based on health claims data , 2016, Acta neurologica Scandinavica.

[11]  Janina Frank Comparing nationwide prevalences of hypertension and depression based on claims data and survey data: An example from Germany. , 2016, Health policy.

[12]  G. Doblhammer,et al.  Short-term trends in dementia prevalence in Germany between the years 2007 and 2009 , 2015, Alzheimer's & Dementia.

[13]  E. Swart,et al.  Gute Praxis Sekundärdatenanalyse (GPS): Leitlinien und Empfehlungen , 2015 .

[14]  G. Petersen,et al.  [Epidemiology of multiple sclerosis in Germany: regional differences and drug prescription in the claims data of the statutory health insurance]. , 2014, Der Nervenarzt.

[15]  R. Mikolajczyk,et al.  Nutzungsmöglichkeiten von Routinedaten der Gesetzlichen Krankenversicherung in der Gesundheitsberichterstattung des Bundes , 2014, Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz.

[16]  F. Prütz,et al.  Erratum zu: Inanspruchnahme der ambulanten und stationären medizinischen Versorgung in Deutschland. Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1) , 2013, Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz.

[17]  F. Prütz,et al.  ­­­Inanspruchnahme der ambulanten und stationären medizinischen Versorgung in Deutschland , 2013, Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz.

[18]  P. Ihle,et al.  Interne Validierung von Diagnosen in GKV-Routinedaten: Konzeption mit Beispielen und Falldefinition , 2010 .

[19]  J. Zeidler,et al.  [Determinants for the diagnosis of ADHD - An analysis based on SHI claims data]. , 2019, Fortschritte der Neurologie Psychiatrie.

[20]  U. Hapke,et al.  [Prevalences of Depression Among Adults: Comparative Analysis of a Nationwide Survey and Routine Data]. , 2018, Das Gesundheitswesen.

[21]  D. Stillfried,et al.  Analyse regionaler Unterschiede in der Prä- valenz und Versorgung depressiver Störun- gen auf Basis vertragsärztlicher Abrech- nungsdaten - Teil 1 Prävalenz , 2012 .