Shape and position of the shadow in the δ = 2 Tomimatsu–Sato spacetime

Within 5–10 years, very long baseline interferometry facilities will be able to observe the ‘shadow’ of super-massive black hole candidates. This will allow us, for the first time, to test gravity in the strong field regime. In this paper, we numerically study the photon orbits in the δ = 2 Tomimatsu–Sato spacetime. The δ = 2 Tomimatsu–Sato spacetime is a stationary, axisymmetric and asymptotically flat exact solution of the vacuum Einstein equations. We compare the associated shadow with the one of Kerr black holes. The shape of the shadow in the δ = 2 Tomimatsu–Sato spacetime is oblate and the difference between the two axes can be as high as 6% when viewed on the equatorial plane. We argue that future space sub-mm interferometers (e.g. VSOP-3) may distinguish the two cases, and thus are able to test the cosmic censorship conjecture.

[1]  Mar Mezcua,et al.  Black Holes , 2015, Astrophysical Wonders.

[2]  N. Yoshida,et al.  Outflows from accreting super-spinars , 2010, 1003.4821.

[3]  T. Johannsen,et al.  TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. I. PROPERTIES OF A QUASI-KERR SPACETIME , 2010, 1003.3415.

[4]  N. Yoshida,et al.  Accretion process onto super-spinning objects , 2009, 0910.1634.

[5]  Katherine Freese,et al.  Apparent shape of super-spinning black holes , 2008, 0812.1328.

[6]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[7]  Rohta Takahashi,et al.  Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes , 2004, astro-ph/0405099.

[8]  N. Drukker Supertube domain walls and elimination of closed timelike curves in string theory , 2004, hep-th/0404239.

[9]  D. Israel Quantization of heterotic strings in a Goedel/Anti de Sitter spacetime and chronology protection , 2003, hep-th/0310158.

[10]  H. Kodama,et al.  Global structure of the Zipoy–Voorhees–Weyl spacetime and the δ = 2 Tomimatsu–Sato spacetime , 2003, gr-qc/0304064.

[11]  S. Ganguli,et al.  Holographic Protection of Chronology in Universes of the Godel Type , 2002, hep-th/0212087.

[12]  J. Lasota,et al.  No observational proof of the black-hole event-horizon , 2002, astro-ph/0207270.

[13]  R. Penrose “Golden Oldie”: Gravitational Collapse: The Role of General Relativity , 2002 .

[14]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[15]  V. S. Manko,et al.  Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments , 1992 .

[16]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[17]  D. C. Robinson Uniqueness of the Kerr black hole , 1975 .

[18]  Humitaka Satō,et al.  New Series of Exact Solutions for Gravitational Fields of Spinning Masses , 1973 .

[19]  Humitaka Satō,et al.  New Exact Solution for the Gravitational Field of a Spinning Mass , 1972 .

[20]  Brandon Carter,et al.  Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .

[21]  R. O. Hansen Multipole moments of stationary space-times , 1974 .